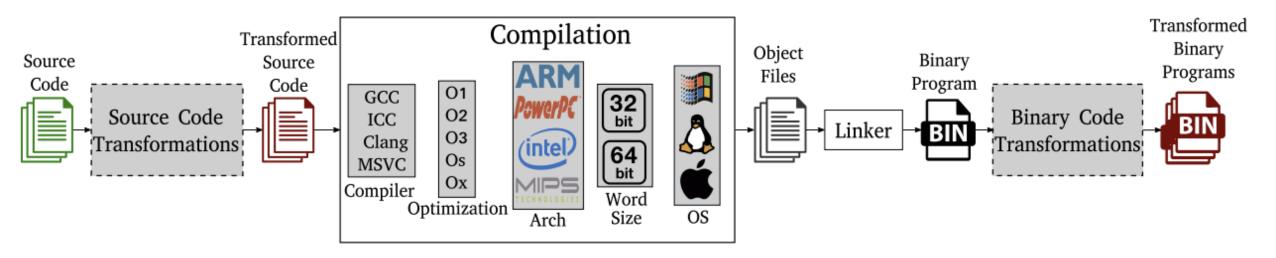
Binary Function Clone Search in Presence of Code Obfuscation and Optimization over Multi-CPU Architectures

ASIA CCS '23

Summary


- Binary Code Similarity Detection (BCSD) Model
 - Try to infer if two binaries are similar
- Resilient Features
- To what?
 - Optimization
 - Obfuscation
 - Cross Architecture

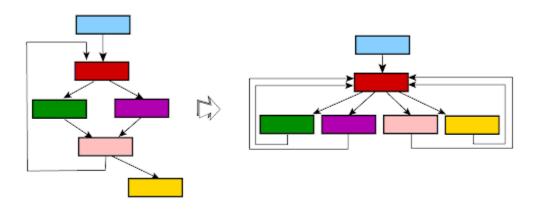
Summary – cont.

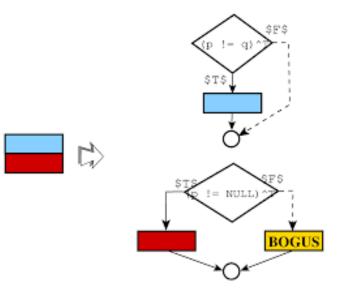
- Why this paper
 - The paper evaluates obfuscation techniques including tigress

Background

Binary Compilation Pipeline

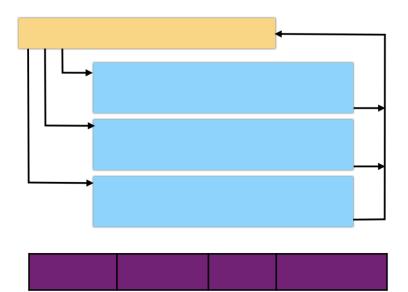
- Binary is generated via source code
- The final binary depends on the compilation process
- *Optimization (00-03)
- *Target Architecture


Obfuscation


- Pre-Compilation / During Compilation
 - Post Compilation => Packing (out of scope)

• O-LLVM / Tigress

O-LLVM


- Using LLVM clang compiler
- Add new transformation pass (obfuscation)
 - Flattening (fla)
 - Bogus Control Flow (bcf)
 - Substitution (sub)

Tigress

- Source to Source Obfuscator
 - Source IN Obfuscated Source OUT
- Provide MANY obfuscation transformations
- *Virtualization

Binary Code Similarity Detection

- One source code can result in infinitely many binaries
- "Similar" Binary => Binary that originates from the same source code

- Feature Extraction
- NLP

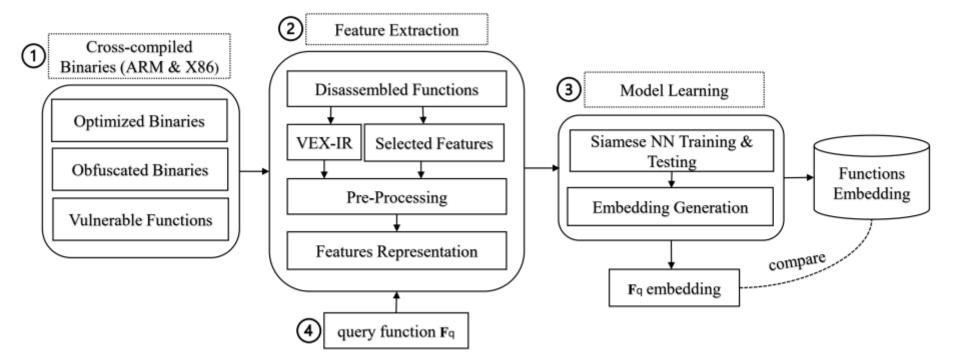


Figure 1: Overview of work flow of BinFinder

- Feature Extraction based BCSD model
- Feature -> Resilient Feature
 - Resilient against: Optimization, Obfuscation, Target Architecture

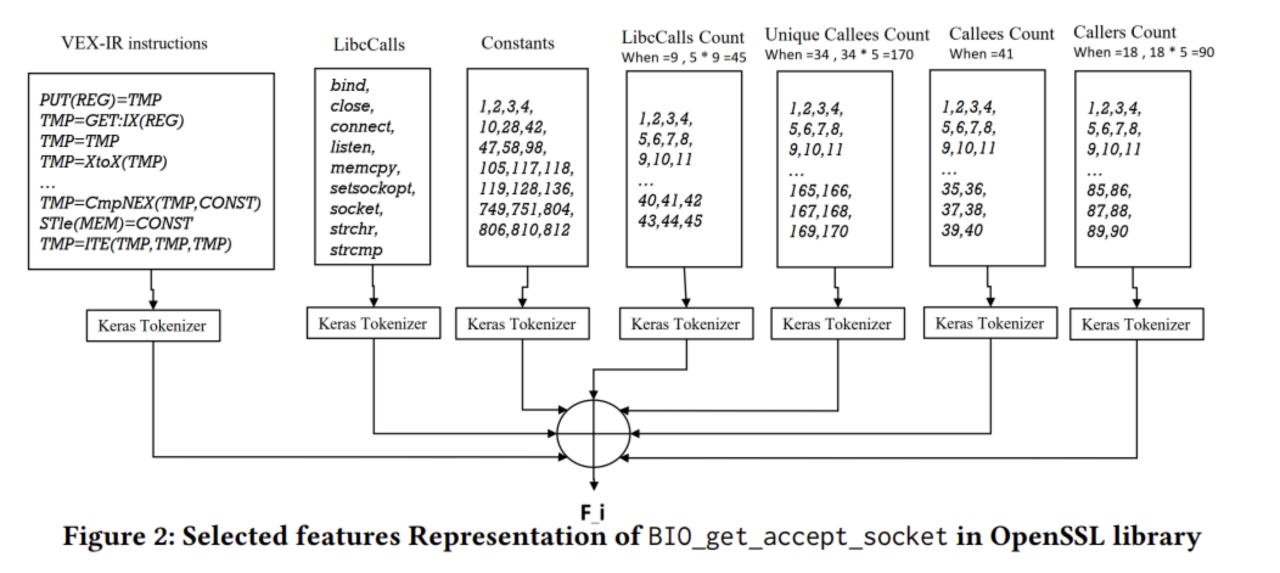
Resilient Features

- Num_callers
- Num_libc_callees
- Num_callees
- Num_unique_callees
- VEX IR Instructions
- LibcCalls
- Constants

	Code	Obfuscatior	15				Comp	ilers Optim	ization	s		
Features	00_fl	O0_fla		ıb	00_bc	f	00_0	1	00_02	2	00_03	3
reatures	P(0)	diff_mean	P(0)	diff_mean	P(0)	diff_mean	P(0)	diff_mean	P(0)	diff_mean	P(0)	diff_mean
num_instructions	0.024	2188.365	0.105	615.22	0.027	3928.47	0.049	719.998	0.055	781.255	0.06	1055.09
num_basic block	0.014	42.219	0.37	5.297	0.036	27.731	0.352	5.548	0.361	5.528	0.363	5.578
num_Arithm	0.345	7.063	0.447	4.957	0.318	9.204	0.469	3.812	0.469	3.857	0.474	3.866
num_Logic	0.44	4.832	0.443	10.926	0.051	12.506	0.492	4.713	0.469	4.936	0.475	4.973
num_Cmp	0.283	29.971	0.394	7.143	0.277	14.342	0.407	7.352	0.405	7.471	0.41	7.525
num_ControlTrans	0.023	43.195	0.267	10.348	0.039	26.388	0.25	10.523	0.253	10.615	0.255	10.673
num_InOut	0.258	117.932	0.326	50.601	0.259	90.489	0.35	45.107	0.36	45.356	0.356	45.442
num_constants	0.091	15.464	0.29	3.391	0.133	2.763	0.324	2.228	0.327	2.294	0.326	2.322
num_callers	0.753	0.602	0.787	0.536	0.735	0.694	0.755	0.618	0.747	0.642	0.746	0.643
num_Libc_callees	0.923	0.158	0.932	0.144	0.888	0.224	0.912	0.194	0.912	0.2	0.91	0.203
num_callees	0.66	1.148	0.719	0.956	0.481	2.042	0.689	1.149	0.696	1.2	0.697	1.22
num_Unique_callees	0.764	0.488	0.785	0.46	0.73	0.535	0.764	0.524	0.773	0.528	0.774	0.528
unique_Vex_Instructions	0.314	0.221	0.314	0.221	0.314	0.221	0.106	0.214	0.107	0.218	0.111	0.231

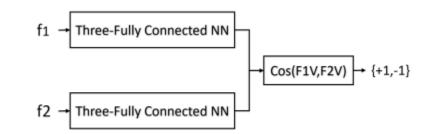
Table 1: Empirical distribution of binary function features P(0)_s

- P(0): probability of a pair of similar binary functions to have the same targeted feature value
- Diff_mean: (absolute difference mean) indicates to which extent the selected feature value is affected


LibcCalls, Constants

 Several instances where dissimilar functions have the same num_libc_callee and num_callee (num_constant typo?)

• But, different LibcCall, Constant


VEX IR Instructions

- Some instances (generally small fnc) exist where
 - No Constant
 - No LibcCall
- Lift asm to VEX IR through angr
 - VEX is an Intermediate Representation (lang in-between asm and source)
 - Angr is a binary analysis platform
- Normalize VEX IR
 - Register=REG, variable=TMP, Memory=MEM, number=CONST
 - Unique Normalized (take only unique instr)

Model Architecture

• Siamese Neural Network

Figure 3: Siamese Neural Network Architecture

- Twin Neural Network that shares weights
- Output vector is compared (Cosine distance)
- Often used for this kind of task

Dataset

(glibc, gmp, binutils, libcurl, openssl, ImageMagic, zlib)

- D-1 [gcc clang] | [O0-3 fla bcf sub] | [x86]
- D-2 [gcc clang] | [O0-3] [x86 ARM]
- D-3 [gcc clang] | [O0-3 fla bcf sub] | [x86 ARM] (openssl, zlib, coreutils)
- D-4 [gcc] | [O0 O3] | [x86] | [Tigress] BinKit
- D-5 [clang] | [O0-3 fla bcf sub]

Results

Vs O-LLVM

	gmp		Open	SSL	zlib		Image	Magic	Binut	ils	Coreu	tils	Findu	tils	Plotut	ils	Inetu	tils	Avg	
	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2
O ₀ Vs BCF	0.79	0.84	0.71	0.75	0.87	0.94	-	-	0.8	0.44	0.55	0.57	0.61	0.68	0.78	0.55	0.54	0.59	0.71	0.67
O ₀ Vs FLA	0.92	0.84	0.77	0.72	0.92	0.92	0.8	0.79	0.86	0.86	0.93	0.92	0.84	0.85	1	0.78	0.93	0.94	0.88	0.85
O ₀ Vs SUB	0.93	0.92	0.92	0.88	0.91	0.95	0.85	0.84	0.9	0.89	0.97	0.98	0.93	0.93	0.97	0.87	0.95	0.95	0.92	0.91
Avg	0.88	0.87	0.8	0.78	0.9	0.94	0.825	0.818	0.84	0.66	0.75	0.76	0.75	0.78	0.88	0.69	0.74	0.77	0.84	0.81

Table 2: Impact of obfuscation on BinFinder using precision at top-1

- M1: Trained tested on D-1 (only opt O0-3)
- M2: Trained tested on D-1 (both opt and obf)
- Test:
 - Query for every original binary in D-1 and few selected pkg in D-5 against its obfuscated variants
 - Query: (clang O0 x86) Look for (clang sub x86) (clang fla x86) (clang bcf x86)

Vs Tigress

		ope	nssl			zl	ib			Core	utils			A	vg	ç 🔤	
	top-1 top-10		top-1 top-10		top-1 top			p-10 top		p-1 top-1		-10					
	00	03	00	03	00	03	00	03	00	03	00	O 3	00	03	00	03	
Add Opaque	0.4	0.58	0.56	0.77	0.89	0.44	1	0.59	0.13	0.17	0.2	0.27	0.47	0.4	0.59	0.54	
EncodeArithmetic	0.42	0.52	0.772	0.78	0.54	0.35	0.84	0.76	0.71	0.43	0.91	0.81	0.56	0.43	0.84	0.78	
EncodeLitrals	0.65	0.75	0.85	0.9	0.85	0.84	1	0.98	0.91	0.72	0.99	0.95	0.8	0.77	0.95	0.94	
Flatten	0.08	0.45	0.14	0.63	0.19	0.75	0.43	0.96	0.21	0.66	0.29	0.84	0.16	0.62	0.29	0.81	
virtualization	0.18	0.12	0.33	0.17	0.3	0.04	0.55	0.33	0.33	0.25	0.56	0.4	0.27	0.14	0.48	0.3	
Avg	0.346	0.48	0.53	0.65	0.55	0.48	0.76	0.72	0.45	0.45	0.59	0.65	0.45	0.47	0.63	0.68	

Table 4: Clone search between original binary functions and obfuscated ones by tigress

	Uniqu	UniqueVex		#constants		constantsList		num_callers		num_libc_callees		callees	num_unique_callees		
	00	O3	00	03	00	03	00	03	00	03	00	03	00	03	
Add Opaque	0.96	0.96	1	0.98	0.99	0.97	0.88	0.89	0.95	0.88	0.56	0.82	0.56	0.82	
EncodeLiterals	0.7	0.88	0.96	0.93	0.93	0.93	0.91	0.84	0.97	0.96	0.84	0.9	0.95	0.94	
Flatten	0.09	0.73	0.6	0.79	0.58	0.79	0.4	0.62	0.88	0.94	0.21	0.79	0.21	0.85	
Virtualization	0.2	0.2	0.46	0.66	0.45	0.66	0.82	0.52	0.95	0.87	0.34	0.29	0.38	0.3	
EncodeArithmetic	0.33	0.42	0.95	0.86	0.92	0.86	0.91	0.81	0.97	0.94	0.84	0.84	0.95	0.91	

Table 5: Compiler optimizations effect against tigress obfuscation techniques over OPENSSL; each value represents P(0)

Vs Tigress

- Add Opaque openssl, recall improves for O3
 - Manual analysis -> O3 removes junk callee

	Uniq	ueVex	#constants		constantsList		num_callers		num_	libc_callees	num_callees	
	00	03	00	03	00	03	00	03	00	03	00	03
Add Opaque	0.96	0.96	1	0.98	0.99	0.97	0.88	0.89	0.95	0.88	0.56	0.82

- Flatten O3 performs better
 - Unique VEX

	Uniq	ueVex
	00	O 3
Add Opaque	0.96	0.96
EncodeLiterals	0.7	0.88
Flatten	0.09	0.73
Virtualization	0.2	0.2
EncodeArithmetic	0.33	0.42
1 - 0 - 11 - 1		

Marcelli et al. USENIX '22

• Kind of benchmark for BCSD

How Machine Learning Is Solving the **Binary Function Similarity Problem**

Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, and Yanick Fratantonio, Cisco Systems, Inc.; Mohamad Mansouri and Davide Balzarotti, EURECOM

https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli

This paper is included in the Proceedings of the 31st USENIX Security Symposium. August 10-12, 2022 · Boston, MA, USA 978-1-939133-31-1

								XM		
	Description	XC	XC+XB	XA	XM	small	medium	large	MRR10	Recall@1
[67] Zeek (direct comparison)	Strands	0.84	0.85	0.84	0.84	0.85	0.83	0.87	0.28	0.13
[40] GMN (direct comparison)[40] GMN (direct comparison)	CFG + BoW opc 200	0.85	0.86	0.86	0.86	0.89	0.82	0.79	0.53	0.45
	CFG + No features	0.86	0.87	0.86	0.87	0.88	0.85	0.84	0.43	0.33
[40] GNN	CFG + BoW opc 200	0.86	0.87	0.86	0.87	0.89	0.84	0.76	0.52	0.44
[40] GNN	CFG + No features	0.82	0.83	0.82	0.82	0.85	0.80	0.76	0.37	0.29
[76] GNN (s2v)	CFG + BoW opc 200	0.81	0.82	0.78	0.81	0.82	0.78	0.74	0.36	0.26
[76] GNN (s2v)	CFG + manual	0.81	0.82	0.80	0.81	0.84	0.77	0.79	0.36	0.28
[76] GNN (s2v)	CFG + No features	0.69	0.70	0.69	0.70	0.70	0.69	0.75	0.12	0.07
[45] w2v + AVG + GNN (s2v)	CFG + N. asm 150	0.79	0.79	0.74	0.77	0.78	0.75	0.73	0.24	0.16
[45] w2v + wAVG + GNN (s2v)	CFG + N. asm 150	0.79	0.79	0.76	0.77	0.78	0.76	0.76	0.29	0.20
[45] w2v + RNN + GNN (s2v)	CFG + N. asm 150	0.79	0.80	0.79	0.80	0.82	0.77	0.80	0.27	0.17
 [49] w2v + SAFE [49] w2v + SAFE [49] w2v + SAFE + trainable [49] rand + SAFE + trainable 	N. asm 150	0.80	0.81	0.80	0.81	0.83	0.77	0.77	0.17	0.07
	N. asm 250	0.82	0.83	0.82	0.83	0.84	0.81	0.82	0.22	0.09
	N. asm 150	0.80	0.81	0.80	0.81	0.83	0.76	0.74	0.29	0.16
	N. asm 150	0.79	0.80	0.79	0.80	0.83	0.75	0.74	0.28	0.17
[14] Asm2Vec	10 CFG random walks	0.77	0.69	0.60	0.65	0.63	0.70	0.78	0.12	0.07
[38] PV-DM	10 CFG random walks	0.77	0.70	0.50	0.62	0.63	0.62	0.61	0.11	0.08
[38] PV-DBOW	10 CFG random walks	0.78	0.70	0.50	0.63	0.63	0.62	0.61	0.11	0.09

Open access to the Proceedings of the 31st USENIX Security Symposium is sponsored by USENIX.

Marcelli et al.

- Dataset-A and Dataset-B (represent different challenges)
 - Different compiler versions
 - Different optimization levels
 - Different CPU architectures
- Dataset-A:
 - Train and test
- Dataset-B:
 - Validate the resulting model on a miscellaneous and extensive group

Approach		AUG	2		XM							
Арргоаси	XC	XC+XB	XA	XM	small	medium	large	MRR10	Recall@1			
BinFinder	0.98	0.97	0.98	0.98	0.98	0.98	0.93	0.8	0.73			
GMN_OPC-200_e16	0.86	0.85	0.86	0.86	0.89	0.82	0.79	0.53	0.45			
GNN-s2v_GeminiNN_OPC-200_e5	0.78	0.81	0.82	0.81	0.84	0.77	0.79	0.36	0.28			
SAFE_ASM-list_e5	0.8	0.8	0.81	0.81	0.83	0.77	0.77	0.17	0.27			
Zeek	0.84	0.84	0.85	0.84	0.85	0.83	0.87	0.28	0.13			
asm2vec	0.62	0.81	0.74	0.69	0.63	0.7	0.78	0.12	0.07			

Table 7: Comparison of state-of-the-art models with BinFinder on Dataset-A tasks

Approach		AUC			MRR1	10	Recall@1			
Арргоасн	XA	XA+XO	XO	XO	XA	XA+XO	XO	XA	XA+XO	
BinFinder	0.99	0.95	0.96	0.77	0.83	0.68	0.72	0.77	0.58	
GMN_OPC-200_e16	0.98	0.96	0.97	0.75	0.84	0.71	0.66	0.77	0.61	
GNN-s2v_GeminiNN_GeminiFeatures_e5	0.96	0.93	0.93	0.57	0.74	0.57	0.47	0.63	0.49	
SAFE_ASM-list_e5	0.9	0.88	0.88	0.27	0.3	0.31	0.14	0.17	0.19	
Trex	0.94	0.94	0.94	0.61	0.50	0.53	0.5	0.37	0.46	
Zeek	0.94	0.91	0.92	0.41	0.45	0.36	0.28	0.30	0.21	
asm2vec_e10	0.69	0.75	0.94	0.60	0.06	0.22	0.49	0.015	0.17	

Table 8: Comparison of state-of-the-art models with BinFinder on Dataset-B tasks

- XO: different opt. same compiler, compiler version, arch.
- XC: different compiler compiler version and opt. same arch and bitness
- XC+XB: different compiler, compiler version, opt, and bitness. Same arch
- XA: function pair have different arch and bitness but same compiler, compiler version, opt
- XA+XO: function pair have different arch, bitness, and opt. Same compiler and compiler version
- XM: function pair comes from arbitrary arch, bitness, opt, compiler, compiler version.
- XM-S/M/L : size of fnc

Cont.

- Classification (Similar? Dissimilar?)
- AUC: aggregate measure of the performance of a model across all possible classification threshold
- Ranking (top similar)
- MRR (mean reciprocal rank)
- Recall@K