
Binary Function Clone Search in Presence
of Code Obfuscation and Optimization

over Multi-CPU Architectures

ASIA CCS ‘23

Summary

• Binary Code Similarity Detection (BCSD) Model
• Try to infer if two binaries are similar

• Resilient Features

• To what?
• Optimization

• Obfuscation

• Cross Architecture

Summary – cont.

• Why this paper
• The paper evaluates obfuscation techniques including tigress

Background

Binary Compilation Pipeline

• Binary is generated via source code

• The final binary depends on the compilation process

• *Optimization (O0-O3)

• *Target Architecture

Irfan Ul Haq and Juan Caballero. 2021. A Survey of Binary Code Similarity. ACM Comput. Surv. 54, 3, Article 51 (April 2022), 38 pages. https://doi.org/10.1145/3446371

Obfuscation

• Pre-Compilation / During Compilation
• Post Compilation => Packing (out of scope)

• O-LLVM / Tigress

O-LLVM

• Using LLVM clang compiler

• Add new transformation pass (obfuscation)
• Flattening (fla)

• Bogus Control Flow (bcf)

• Substitution (sub)

https://tigress.wtf/

Tigress

• Source to Source Obfuscator
• Source IN Obfuscated Source OUT

• Provide MANY obfuscation transformations

• *Virtualization

Binary Code Similarity Detection

• One source code can result in infinitely many binaries

• “Similar” Binary => Binary that originates from the same
source code

• Feature Extraction

• NLP

• Feature Extraction based BCSD model

• Feature -> Resilient Feature
• Resilient against: Optimization, Obfuscation, Target Architecture

Resilient Features

• Num_callers

• Num_libc_callees

• Num_callees

• Num_unique_callees

• VEX IR Instructions

• LibcCalls

• Constants

• P(0): probability of a pair of similar binary functions to have
the same targeted feature value

• Diff_mean: (absolute difference mean) indicates to which
extent the selected feature value is affected

LibcCalls, Constants

• Several instances where dissimilar functions have the same
num_libc_callee and num_callee (num_constant typo?)

• But, different LibcCall, Constant

VEX IR Instructions

• Some instances (generally small fnc) exist where
• No Constant

• No LibcCall

• Lift asm to VEX IR through angr
• VEX is an Intermediate Representation (lang in-between asm and source)

• Angr is a binary analysis platform

• Normalize VEX IR
• Register=REG, variable=TMP, Memory=MEM, number=CONST

• Unique Normalized (take only unique instr)

Model Architecture

• Siamese Neural Network

• Twin Neural Network that shares weights

• Output vector is compared (Cosine distance)

• Often used for this kind of task

Dataset

(glibc, gmp, binutils, libcurl, openssl, ImageMagic, zlib)

• D-1 [gcc clang] | [O0-3 fla bcf sub] | [x86]

• D-2 [gcc clang] | [O0-3] [x86 ARM]

• D-3 [gcc clang] | [O0-3 fla bcf sub] | [x86 ARM]

(openssl, zlib, coreutils)

• D-4 [gcc] | [O0 O3] | [x86] | [Tigress]

BinKit

• D-5 [clang] | [O0-3 fla bcf sub]

Results

Vs O-LLVM

• M1: Trained tested on D-1 (only opt O0-3)

• M2: Trained tested on D-1 (both opt and obf)

• Test:
• Query for every original binary in D-1 and few selected pkg in D-5 against its

obfuscated variants

• Query: (clang O0 x86) Look for (clang sub x86) (clang fla x86) (clang bcf x86)

Vs Tigress

Vs Tigress

• Add Opaque – openssl, recall improves for O3
• Manual analysis -> O3 removes junk callee

• Flatten – O3 performs better
• Unique VEX

Marcelli et al. USENIX ‘22

• Kind of benchmark for BCSD

Marcelli et al.

• Dataset-A and Dataset-B (represent different challenges)
• Different compiler versions

• Different optimization levels

• Different CPU architectures

• Dataset-A:
• Train and test

• Dataset-B:
• Validate the resulting model on a miscellaneous and extensive group

• XO: different opt. same compiler, compiler version, arch.

• XC: different compiler compiler version and opt. same arch
and bitness

• XC+XB: different compiler, compiler version, opt, and bitness.
Same arch

• XA: function pair have different arch and bitness but same
compiler, compiler version, opt

• XA+XO: function pair have different arch, bitness, and opt.
Same compiler and compiler version

• XM: function pair comes from arbitrary arch, bitness, opt,
compiler, compiler version.

• XM-S/M/L : size of fnc

Cont.

• Classification (Similar? Dissimilar?)

• AUC: aggregate measure of the performance of a model
across all possible classification threshold

• Ranking (top similar)

• MRR (mean reciprocal rank)

• Recall@K

	Slide 1: Binary Function Clone Search in Presence of Code Obfuscation and Optimization over Multi-CPU Architectures
	Slide 2: Summary
	Slide 3: Summary – cont.
	Slide 4: Background
	Slide 5: Binary Compilation Pipeline
	Slide 6: Obfuscation
	Slide 7: O-LLVM
	Slide 8: Tigress
	Slide 9: Binary Code Similarity Detection
	Slide 10
	Slide 11: Resilient Features
	Slide 12
	Slide 13: LibcCalls, Constants
	Slide 14: VEX IR Instructions
	Slide 15
	Slide 16: Model Architecture
	Slide 17: Dataset
	Slide 18: Results
	Slide 19: Vs O-LLVM
	Slide 20: Vs Tigress
	Slide 21: Vs Tigress
	Slide 22: Marcelli et al. USENIX ‘22
	Slide 23: Marcelli et al.
	Slide 24
	Slide 25
	Slide 26: Cont.

