
USENIX ‘24

Background - Fuzzing

• Black box software testing technique
• Search for implementation bugs using malformed/semi-malformed

data injection in an automated fashion

https://www.ibm.com/history/punched-card
https://owasp.org/www-community/Fuzzing

https://www.ibm.com/history/punched-card
https://owasp.org/www-community/Fuzzing

Background - Guided Fuzzing

• How do we generate the input data for fuzzing?

https://www.code-intelligence.com/blog/caroline-lemieux-expanding-fuzzing

https://www.code-intelligence.com/blog/caroline-lemieux-expanding-fuzzing

Background - Why Code Coverage?

• Determine how much source code gets executed during the
run of a program.

https://docs.devexpress.com/CodeRushForRoslyn/115735/unit-testing-assistance/analyze-code-coverage

https://docs.devexpress.com/CodeRushForRoslyn/115735/unit-testing-assistance/analyze-code-coverage

Motivation

The use of code coverage in guided fuzzing has been shown to be highly
effective, …
code coverage in guided fuzzing has been responsible for the discovery of
40,000 bugs in 650 popular projects.
…

However, code coverage is not sufficient to fully reflect a program’s semantics.

…

when a compiler converts a source into machine code, the algorithms are
transformed into machine instructions, while the data structures are encoded
as constant data.

Motivation Breakdown

• #1. Code Coverage is not sufficient.

• #2. Data Coverage is as important because data section
contains the data structures.

• We propose and implement a guided fuzzing technique using
data coverage.

Vocabulary used

• Immediate Value – Data embedded in code. (0xdeadbeef)

• Static Value –String literals, static variables, and global
variables. (e.g., .data section)

Limitation of Code Coverage

• Constraint Solving
• Concolic Execution

• State explosion (8^m paths to solve (Figure 2))

• Intelligent branch solving
• Require human intervention
• Table 2

Benefit of Data Coverage

• Static Values
• Complex structures (lookup tables, binary trees, di-graph)

• Figure 3

• Data coverage can assist with this problem by tracking data usage

• Immediate Values

Overall Design

Implementation

• Coverage Maintenance
• Data access is represented as tuple: (address, length)

• Address:
• Static Values: Instrument load operations (search for load addresses)
• Immediate Values: Program Counter

• Length:
• Predicate Emulation

Predicate Emulation?

• 0b0001 == 0b1110 ?
• 0b1110 == 0b1110 ?
• 0b0001 > 0b 1110 ?

• 1. “Effectively-used bit” of equivalence relations is the number of equal bits in the
corresponding positions for both operands”

• 2. “Effectively-used bits” of partial order relations is the number of consecutive equal bits of
both operands starting from the most significant bit”

Implementation

• Coverage Representation
• Known Coverage: Array[addr] = length
• Novel Coverage: Set{addr}

Implementation

• Coverage Utilization
• Reduce the number of saved seeds
• New data reads 8 bits while old one reads 7 bits

• Directly replace the 7-bit seed with the new one.

Overall Design

Various Data Accesses

Experiment

• WingFuzz (proposed)
• Based on libFuzzer (LLVM)
• LLVM-14

• FuzzBench (default setup)
• 19 target programs
• 23 hours run
• Each trial repeated 20 times

Experiment

• RQ1: Can data coverage improve fuzzing performance?

• RQ2: Is data coverage orthogonal to prior techniques?

• RQ3: How does individual component contribute?

• RQ4: What is the runtime overhead of data coverage?

• RQ5: Will the extra guidance cause state explosion?

Performance

Orthogonality

• AFL++ includes various data-sensitive fuzzing techniques

Orthogonality - cont

• Identified two new bugs in Little-CMS

• Popular package integrated into software such as:
• Chromium
• Firefox
• OpenJDK

• Issue #373 and Issue #374

• Google OSS-Fuzz , AFL++ continuous fuzz since 2016 + manual
audit in 2018

Additional bugs identified on Serenity OS

• Google’s OSS-Fuzz cluster continuously fuzzed it for more than two
years (found 140 bugs)

• Using default initial seed from OSS-Fuzz + duration of 23 hours
• Identified 26 bugs in 17 components of the newest version of the OS (2023-03-20)

Contribution of each Component

Contribution of each Component

• Occasionally WingFuzz-Data+ outperforms WingFuzz !

Execution Overhead

• Fuzzing throughput reduction of 34%

Execution Overhead

• End-to-end fuzzing performance
• For short trials (15 minutes)
• WingFuzz demonstrated highest coverage score

• WingFuzz: avg. Cov 97.0 avg. rank 2.5
• AFL++: avg. Cov 96.0 avg. rank 2.7
• libFuzzer: avg. Cov 87.7 avg. rank 7.2

Queue Size and State Explosion

Discussion

• Seed Replacement mechanism
• Explore if this method can be extrapolated to enhance the

performance of fuzzers utilizing advanced code coverage feedback.

• Data-Access Categories
• Optimal trade-off between precision and efficiency
• Open to exploring additional data collection techniques to enhance

understanding of the application

	슬라이드 번호 1
	Background - Fuzzing
	Background - Guided Fuzzing
	Background - Why Code Coverage?
	Motivation
	Motivation Breakdown
	Vocabulary used
	Limitation of Code Coverage
	슬라이드 번호 9
	Benefit of Data Coverage
	Overall Design
	Implementation
	Predicate Emulation?
	Implementation
	Implementation
	Overall Design
	Various Data Accesses
	Experiment
	Experiment
	Performance
	Orthogonality
	Orthogonality - cont
	슬라이드 번호 23
	Additional bugs identified on Serenity OS
	Contribution of each Component
	Contribution of each Component
	Execution Overhead
	Execution Overhead
	Queue Size and State Explosion
	Discussion

