

Motivation

• Rust-for-Linux (RFL)
• We know it exists

• We know Rust is memory safe

• However,
• What is the status quo of RFL?

• Does RFL live up to the hype?

• What are the lessons learned from RFL?

Summary

• RFL is rarely studied
• Does it solve the kernel dilemma of safety vs performance?

• First empirical study on RFL

• Collect and analyze 6 key RFL drivers
• Hundreds of issues and pull requests

• Thousands of commits and mail exchange (Linux mailing list)

• 12K discussion on Zulip (online forum)

Rust Safety Model

• Ownership and Lifetime
• Each memory location have a single owner

• Each owner has its scope as its lifetime

• Move and Borrow

• The “unsafe” keyword

How do you implant Rust into Linux?

• Preprocess kernel APIs we need

• rust-bindgen generates Rust API from kernel API
• Rust API is unsafe (as it maps to kernel address space; unchecked by

Rust)

• RFL wraps it with a safe abstraction layer
• It is proven by properly wrapping unsafe code under safe APIs it is

possible for the whole program to still enjoy the safety guarantee of
Rust.

Rust for Linux

Status quo of RFL

• Methodology
• Collect PR/commits in GitHub

• Patches on Linux mailing list

• Categorize RFL code into three categories
• Pending: 500+ commits (186K LoC)

• Staged: 1300+ commits (112K LoC)

• Merged: 160+ commits (19K LoC)

Development Progress

• In terms of LoC, merged code (7.1%) constitutes of 0.125% of kernel code

• Insight 1: “Driver, file, netdev, and filesystems are the long tail of RFL code”
• These systems account for most kernel code (78% in Linux v6.2)

Patch Distribution

• Insight 2: “RFL infrastructure has matured, with safe
abstraction and drivers being the next focus”
• Foundation of RFL has been laid (Kbuild’s recession)

Trend
• Insight 3: “RFL is bottlenecked by code review but not by code development”

• Lack of qualified reviewers who must be familiar with both Rust and kernel programming

• Mismatch of collaboration conventions between the RFL and Linux subsystem communities

• Deadlock of RFL development

• Subsystem community unwilling to review abstractions without real Rust drivers

• Without Abstractions RFL community is unable to construct drivers in Rust

Rustify Linux with safe abstractions

• Kernel Programming Paradigm
• Extensive use of typecasting, pointer arithmetic, bit operation

• Converting kernel data structures
• RFL leverage bindgen (rule-based) to generate Rust bindings

Rustify Linux with safe abstractions

• Kernel Programming Paradigm
• Extensive use of typecasting, pointer arithmetic, bit operation

• Converting kernel data structures
• RFL leverage bindgen (rule-based) to generate Rust bindings

Rustify Linux with safe abstractions

• Kernel Programming Paradigm
• Extensive use of typecasting, pointer arithmetic, bit operation

• Converting kernel data structures
• RFL leverage bindgen (rule-based) to generate Rust bindings

Not every C type translates into a corresponding Rust
primitive

Insight 4: “Kernel’s initiative to control memory in fine
granularity conflicts Rust philosophy, which incurs overhead

for RFL"

Binding kernel data to Rust

• Generated bindings have identical data layout as their C
counterparts
• Bindings involve numerous raw pointers (unsafe to use)

• RFL uses helper types to manage kernel data

Helper Type

• Type and Deref coercion
• E.g,. For void* pointers RFL implement deref traits that coerces the dereference to

result in a correct type

• Automate life cycle management
• Implement three new low-level types to manage kernel structs (ScopeGuard, ARef,

opaque)

• These types execute custom stub functions upon entering/exiting specific scopes
• ScopeGuard frees allocated resources of a Task by executing its drop traits when the

Task’s life cycle ends

Helper Type

• Type and Deref coercion
• E.g,. For void* pointers RFL implement deref traits that coerces the dereference to

result in a correct type

• Automate life cycle management
• Implement three new low-level types to manage kernel structs (ScopeGuard, ARef,

opaque)

• These types execute custom stub functions upon entering/exiting specific scopes
• ScopeGuard frees allocated resources of a Task by executing its drop traits when the

Task’s life cycle ends

Insight 5: “RFL uses helper types to delegate management of
kernel data to Rust while leaving the operation to kernel

itself”

Rustify device drivers

• Ownership
• Unlike C, developer must annotate the device data with ownership

• How the data might be used by what entity?

• E.g., Arc if it might be shared among threads, Pin if data should be unmovable

• Pin<Box<SpinLock<Boxx<Ring<RxDesc>>>>>

• Implementation
• E.g., Unlike C, Rust requires multiple extra layers to implement

dynamically-sized arrays (code bloat)

Rustify device drivers

• Ownership
• Unlike C, developer must annotate the device data with ownership

• How the data might be used by what entity?

• E.g., Arc if it might be shared among threads, Pin if data should be unmovable

• Pin<Box<SpinLock<Boxx<Ring<RxDesc>>>>>

• Implementation
• E.g., Unlike C, Rust requires multiple extra layers to implement

dynamically-sized arrays (code bloat)

Rustify device drivers

• Ownership
• Unlike C, developer must annotate the device data with ownership

• How the data might be used by what entity?

• E.g., Arc if it might be shared among threads, Pin if data should be unmovable

• Pin<Box<SpinLock<Boxx<Ring<RxDesc>>>>>

• Implementation
• E.g., Unlike C, Rust requires multiple extra layers to implement

dynamically-sized arrays (code bloat)

Insight 6: “The major difficulty of writing safe drivers in Rust
is to reconcile the inflexibility of Rust versus kernel

programming conventions, which is often an oversight by RFL
and the Linux community from what we observe”

RFL makes Linux more “securable”

• Compared to C, RFL greatly reduces the attack space

• It is hard, if not impossible to eliminate unsafe blocks
• E.g., Kernel exploits inline assembly for managing TLB and issuing memory

barrier

• Ownership sometimes introduce twisted implementation (causing long
review cycle)
• Community compromise to using unsafe

• Bugs do not disappear, only hide deeper
• Semantic bugs caused by subtle difference in Rust and kernel memory

allocation methods. (These bugs pass all compiler check)

RFL makes Linux more “securable”

• Compared to C, RFL greatly reduces the attack space

• It is hard, if not impossible to eliminate unsafe blocks
• E.g., Kernel exploits inline assembly for managing TLB and issuing memory

barrier

• Ownership sometimes introduce twisted implementation (causing long
review cycle)
• Community compromise to using unsafe

• Bugs do not disappear, only hide deeper
• Semantic bugs caused by subtle difference in Rust and kernel memory

allocation methods. (These bugs pass all compiler check)

Insight 7: “with RFL, Linux becomes more “securable” but still
cannot be fully secure”

Overhead of RFL
• Methodology

• Collect 4 drivers with serious use cases (NVME, Binder, Null Block, E1000)

• + 2 toy drivers (gpio and sem)

• Only 2 toy drivers + E1000 implement full features

Binary Size

• Rust drivers that fully implement all features are significantly
larger
• Rust generates extra code to support its unique features

• Generic programming

• Boundary checks

• Lifecycle Management

• …

• Binder driver introduce less overhead due to the frequent use of
function pointers with unsafe keywords

Binary Size

• Rust drivers that fully implement all features are significantly
larger
• Rust generates extra code to support its unique features

• Generic programming

• Boundary checks

• Lifecycle Management

• …

• Binder driver introduce less overhead due to the frequent use of
function pointers with unsafe keywords

Performance

• Mostly, Rust driver show on par performance

• Wen Rust performs poorly
• Rust ensure thread safety but does performance depend on the developer
• Rust performs poorly in memory-intensive workloads (runtime checks in array

access)
• Rust use emulate bit fields as array access (which adds runtime checks)
• Rust massively use pointers to share ownership (high cache/TLB/branch miss rates)

• When Rust performs better
• Smart pointers reduce the size of structs
• Rust does not implement full features; thus some code paths may be omitted

Performance

• Mostly, Rust driver show on par performance

• Wen Rust performs poorly
• Rust ensure thread safety but does performance depend on the developer
• Rust performs poorly in memory-intensive workloads (runtime checks in array

access)
• Rust use emulate bit fields as array access (which adds runtime checks)
• Rust massively use pointers to share ownership (high cache/TLB/branch miss rates)

• When Rust performs better
• Smart pointers reduce the size of structs
• Rust does not implement full features; thus some code paths may be omitted

Insight 8: “There is no free lunch for performance – it is the
programmer that counts!”

Final Thoughts

• Paper raises various questions regarding integration of Rust into
Linux (written mainly in C)

• Lots of detail on problems Rust developers face in kernel
development

• Paper is organized in RQs but the insights were more interesting
(3 RQs but 8 insights; slightly odd structure?)

• Worth taking a look if your interested in the interaction between C
and Rust

	슬라이드 1
	슬라이드 2: Motivation
	슬라이드 3: Summary
	슬라이드 4: Rust Safety Model
	슬라이드 5: How do you implant Rust into Linux?
	슬라이드 6: Rust for Linux
	슬라이드 7: Status quo of RFL
	슬라이드 8: Development Progress
	슬라이드 9: Patch Distribution
	슬라이드 10: Trend
	슬라이드 11: Rustify Linux with safe abstractions
	슬라이드 12: Rustify Linux with safe abstractions
	슬라이드 13: Rustify Linux with safe abstractions
	슬라이드 14: Binding kernel data to Rust
	슬라이드 15: Helper Type
	슬라이드 16: Helper Type
	슬라이드 17: Rustify device drivers
	슬라이드 18: Rustify device drivers
	슬라이드 19: Rustify device drivers
	슬라이드 20: RFL makes Linux more “securable”
	슬라이드 21: RFL makes Linux more “securable”
	슬라이드 22: Overhead of RFL
	슬라이드 23: Binary Size
	슬라이드 24: Binary Size
	슬라이드 25: Performance
	슬라이드 26: Performance
	슬라이드 27: Final Thoughts

