


Motivation

• Rust-for-Linux (RFL)
• We know it exists

• We know Rust is memory safe

• However,
• What is the status quo of RFL?

• Does RFL live up to the hype?

• What are the lessons learned from RFL?



Summary

• RFL is rarely studied
• Does it solve the kernel dilemma of safety vs performance?

• First empirical study on RFL

• Collect and analyze 6 key RFL drivers
• Hundreds of issues and pull requests

• Thousands of commits and mail exchange (Linux mailing list)

• 12K discussion on Zulip (online forum)



Rust Safety Model

• Ownership and Lifetime
• Each memory location have a single owner

• Each owner has its scope as its lifetime

• Move and Borrow

• The “unsafe” keyword



How do you implant Rust into Linux?

• Preprocess kernel APIs we need

• rust-bindgen generates Rust API from kernel API
• Rust API is unsafe (as it maps to kernel address space; unchecked by 

Rust)

• RFL wraps it with a safe abstraction layer
• It is proven by properly wrapping unsafe code under safe APIs it is 

possible for the whole program to still enjoy the safety guarantee of 
Rust.



Rust for Linux



Status quo of RFL

• Methodology
• Collect PR/commits in GitHub

• Patches on Linux mailing list

• Categorize RFL code into three categories
• Pending: 500+ commits (186K LoC)

• Staged: 1300+ commits (112K LoC)

• Merged: 160+ commits (19K LoC)



Development Progress

• In terms of LoC, merged code (7.1%) constitutes of 0.125% of kernel code

• Insight 1: “Driver, file, netdev, and filesystems are the long tail of RFL code”
• These systems account for most kernel code (78% in Linux v6.2)



Patch Distribution

• Insight 2: “RFL infrastructure has matured, with safe 
abstraction and drivers being the next focus”
• Foundation of RFL has been laid (Kbuild’s recession)



Trend
• Insight 3: “RFL is bottlenecked by code review but not by code development”

• Lack of qualified reviewers who must be familiar with both Rust and kernel programming

• Mismatch of collaboration conventions between the RFL and Linux subsystem communities

• Deadlock of RFL development

• Subsystem community unwilling to review abstractions without real Rust drivers

• Without Abstractions RFL community is unable to construct drivers in Rust



Rustify Linux with safe abstractions

• Kernel Programming Paradigm
• Extensive use of typecasting, pointer arithmetic, bit operation

• Converting kernel data structures
• RFL leverage bindgen (rule-based) to generate Rust bindings
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Rustify Linux with safe abstractions

• Kernel Programming Paradigm
• Extensive use of typecasting, pointer arithmetic, bit operation

• Converting kernel data structures
• RFL leverage bindgen (rule-based) to generate Rust bindings

Not every C type translates into a corresponding Rust 
primitive

Insight 4: “Kernel’s initiative to control memory in fine
granularity conflicts Rust philosophy, which incurs overhead 

for RFL"



Binding kernel data to Rust

• Generated bindings have identical data layout as their C 
counterparts
• Bindings involve numerous raw pointers (unsafe to use)

• RFL uses helper types to manage kernel data



Helper Type

• Type and Deref coercion 
• E.g,. For void* pointers RFL implement deref traits that coerces the dereference to 

result in a correct type

• Automate life cycle management
• Implement three new low-level types to manage kernel structs (ScopeGuard, ARef, 

opaque)

• These types execute custom stub functions upon entering/exiting specific scopes
• ScopeGuard frees allocated resources of a Task by executing its drop traits when the 

Task’s life cycle ends
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• E.g,. For void* pointers RFL implement deref traits that coerces the dereference to 

result in a correct type

• Automate life cycle management
• Implement three new low-level types to manage kernel structs (ScopeGuard, ARef, 

opaque)

• These types execute custom stub functions upon entering/exiting specific scopes
• ScopeGuard frees allocated resources of a Task by executing its drop traits when the 

Task’s life cycle ends

Insight 5: “RFL uses helper types to delegate management of 
kernel data to Rust while leaving the operation to kernel 

itself”



Rustify device drivers

• Ownership
• Unlike C, developer must annotate the device data with ownership

• How the data might be used by what entity?

• E.g., Arc if it might be shared among threads, Pin if data should be unmovable

• Pin<Box<SpinLock<Boxx<Ring<RxDesc>>>>>

• Implementation
• E.g., Unlike C, Rust requires multiple extra layers to implement 

dynamically-sized arrays (code bloat)
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• Ownership
• Unlike C, developer must annotate the device data with ownership

• How the data might be used by what entity?

• E.g., Arc if it might be shared among threads, Pin if data should be unmovable

• Pin<Box<SpinLock<Boxx<Ring<RxDesc>>>>>

• Implementation
• E.g., Unlike C, Rust requires multiple extra layers to implement 

dynamically-sized arrays (code bloat)

Insight 6: “The major difficulty of writing safe drivers in Rust 
is to reconcile the inflexibility of Rust versus kernel 

programming conventions, which is often an oversight by RFL 
and the Linux community from what we observe”



RFL makes Linux more “securable”

• Compared to C, RFL greatly reduces the attack space

• It is hard, if not impossible to eliminate unsafe blocks
• E.g., Kernel exploits inline assembly for managing TLB and issuing memory 

barrier

• Ownership sometimes introduce twisted implementation (causing long 
review cycle)
• Community compromise to using unsafe

• Bugs do not disappear, only hide deeper
• Semantic bugs caused by subtle difference in Rust and kernel memory 

allocation methods. (These bugs pass all compiler check)
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• Compared to C, RFL greatly reduces the attack space

• It is hard, if not impossible to eliminate unsafe blocks
• E.g., Kernel exploits inline assembly for managing TLB and issuing memory 

barrier

• Ownership sometimes introduce twisted implementation (causing long 
review cycle)
• Community compromise to using unsafe

• Bugs do not disappear, only hide deeper
• Semantic bugs caused by subtle difference in Rust and kernel memory 

allocation methods. (These bugs pass all compiler check)

Insight 7: “with RFL, Linux becomes more “securable” but still 
cannot be fully secure”



Overhead of RFL
• Methodology

• Collect 4 drivers with serious use cases (NVME, Binder, Null Block, E1000)

• + 2 toy drivers (gpio and sem)

• Only 2 toy drivers + E1000 implement full features



Binary Size

• Rust drivers that fully implement all features are significantly 
larger
• Rust generates extra code to support its unique features

• Generic programming

• Boundary checks

• Lifecycle Management

• …

• Binder driver introduce less overhead due to the frequent use of 
function pointers with unsafe keywords
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Performance

• Mostly, Rust driver show on par performance

• Wen Rust performs poorly
• Rust ensure thread safety but does performance depend on the developer
• Rust performs poorly in memory-intensive workloads (runtime checks in array 

access)
• Rust use emulate bit fields as array access (which adds runtime checks)
• Rust massively use pointers to share ownership (high cache/TLB/branch miss rates)

• When Rust performs better
• Smart pointers reduce the size of structs
• Rust does not implement full features; thus some code paths may be omitted
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• Mostly, Rust driver show on par performance

• Wen Rust performs poorly
• Rust ensure thread safety but does performance depend on the developer
• Rust performs poorly in memory-intensive workloads (runtime checks in array 

access)
• Rust use emulate bit fields as array access (which adds runtime checks)
• Rust massively use pointers to share ownership (high cache/TLB/branch miss rates)

• When Rust performs better
• Smart pointers reduce the size of structs
• Rust does not implement full features; thus some code paths may be omitted

Insight 8: “There is no free lunch for performance – it is the 
programmer that counts!”



Final Thoughts

• Paper raises various questions regarding integration of Rust into 
Linux (written mainly in C)

• Lots of detail on problems Rust developers face in kernel 
development 

• Paper is organized in RQs but the insights were more interesting 
(3 RQs but 8 insights; slightly odd structure?)  

• Worth taking a look if your interested in the interaction between C 
and Rust
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