From Grim Reality to Practical

Solution: Malware Classification
In Real-World Noise

S&P 23

Labels in Malware

« Key assumption in DL technique: Sufficient Training data with
correct labels

* Incorrectly labeled Malware sample -> prevalent

Overview

* Propose MORSE (Malware classificatiOn fRom noiSy labEls)

* Analyze previous Noise Learning Solution’s limitation in the
context of Malware

* Noise Learning Solution tailored for Malware

Noise Learning

« Two Major Types
« #1 Use all noisy data
« #2 Use some noisy data

* Previous Works use the following 4 techniques

e Use all
« Label Sanitization
* Loss Robustification
* Noise Matrix Estimation

e Use some
« Sample Selection

® A Correct

n
o
+°0e
[/x"“ A
.......... i === An‘r

(a) Sample selection selects samples possibly correctly labeled

and then learns the decision boundary.

I
. ./'. *
-_--1"‘ N
N Y

A

-
=
-
-

—
=
-
-

{ + Incorrect

.. ________
...{/
.:./ A A &
----- A AL A

(b) Label sanitization corrects mistakenly labeled samples and

then learns the decision boundary.

(c) Loss robustification uses a new, robust loss function to
learn the decision boundary.

Figure 1: The demonstration of existing noise learning methods in binary classification. Each geometry pattern represents
a sample. The circle and triangle pattern indicates the different label of the sample. The geometry with a cross indicates
the sample is incorrectly labeled. For example, circle with a cross denotes the sample is mistakenly labeled as “circle” and
its true label should be “triangle”. In each subfigure, the left shows the decision boundary learned directly from the noisy

(d) Noise matrix estimation learns a transition matrix (“T")
and then uses it to correct the inaccurate decision boundary.

training dataset, whereas the right depicts the decision boundary learned by the corresponding noise learning method.

Label Sanitization

« Uses all entire noisy dataset for training
 Corrects Labels to offset their negative impact

» Research show incorrectly labeled data impact loss function
differently

44 Incorrect

——

e L
-
”
P

o ,’ ° . J—
) ;r# o0 o
- / A
...... A A 2. A A
*, Ay A A AA A

(b) Label sanitization corrects mistakenly labeled samples and
then learns the decision boundary.

Loss Robustification

« Uses the entire noisy dataset
* Incorrect labels impacts loss function differently
* Propose a new loss function robust against noisy labels

== — T 5
“—’- --_-l
- -
-
-

o ?"/ > ® -
00/ , A ‘. ® o."* A
7&‘ AA ® aa
AAL QA A Ay A A

__

(c) Loss robustification uses a new, robust loss function to
learn the decision boundary.

Noise Matrix Estimation

 Learn a transition matrix from entire noisy dataset

* Transition Matrix could flip incorrect prediction results made
by the model trained on noisy training datasets.

(d) Noise matrix estimation learns a transition matrix (“T)
and then uses 1t to correct the 1naccurate decision boundary.

Sample Selection

* Minimize the impact of noisy labels
« |dentify incorrectly labeled samples
e Eliminate or downplay the noisy samples from model training

procedure
® A Correct
___________________________________ P R T I
o, & o
4# . ,’1*:—"" 4#7 .. . ---------
@ " A A O }/' A A
1*‘* __::::_'__'__’__’__'_IE:: _____ - * _____________

(a) Sample selection selects samples possibly correctly labeled
and then learns the decision boundary.

Evaluation of Existing
Methods

Dataset

 Windows PE dataset
 Android Dataset

e How do we know noise rate?

TABLE 1: Statistics of the Windows PE malware dataset.

ID Family # of Samples # of Training . Nms.e.rate
samples In training set
0 Benign 500 400 0.000
1 VirLock 900 800 0.005
2 WannaCry 920 820 0.002
3 Upatre 440 340 0.032
4 Cerber 1044 944 0.156
5 Urelas 572 472 0.011
6 WinActivator 166 66 0.106
7 Pykspa 744 644 0.019
8 Ramnit 324 224 0.295
9 Gamarue 608 508 0.750
10 | InstallMonster 299 199 0.472
11 Locky 157 57 0.544

TABLE 2: The statistics of the Android malware dataset.

ID Family # of Samples # of Training . N01§e-rate
samples In training set
0 Smserg 2687 2587 0.040
1 Benign 4683 4583 0.699
2 Autoins 200 100 0.150
3 Jiagu 678 578 0.235
4 Shedun 10867 10767 0.548
5 Wapron 857 757 0.136
6 Dnotua 136 36 0.583
7 Hiddad 185 85 0.000
8 Secneo 203 103 0.223
9 Triada 299 199 0.005
10 Secapk 155 55 0.055
11 Smspay 281 181 0.028
12 | Qappusin 158 58 0.000

Windows PE Dataset

* We assume the labels are 100% accurate
(500 benign, 6174 malicious)
« Obtained from security lab

» Carefully analyzed by at least three security analyst with 5+ years of
experience

« Generation of noisy labels
 Used VirusTotal

« Upload all executables to VirusTotal (discovered 11.38% of PE files
provided had at least one wrong label by a vendor)

« Randomly change the label to what the vendor provided (noisy label)

TABLE 1: Statistics of the Windows PE malware dataset.

ID Family # of Samples # of Training : Nms_e_rate
samples in training set

0 Benign 500 400 0.000

1 VirLock 900 800 0.005

2 WannaCry 920 820 0.002

3 Upatre 440 340 0.032

4 Cerber 1044 944 0.156

5 Urelas 572 472 0.011

6 WinActivator 166 66 0.106

7 Pykspa 744 644 0.019

8 Ramnit 324 224 0.295

9 Gamarue 608 508 0.750
10 | InstallMonster 299 199 0.472
11 Locky 157 57 0.544

Android Dataset

* VirusShare2018, 4683 benign 16706 android malware
* Difficult to check label correctness in this case

 Generation of noisy labels

« Automatically obtained noisy labels through Virus Total
« Upload to VT, correct label: majority vote between vendors
* Noisy Label: from one vendor (lkarus)

TABLE 2: The statistics of the Android malware dataset.

of Training

Noise rate

ID Family # of Samples samples in training set
0 Smserg 2687 2587 0.040
1 Benign 4683 4583 0.699
2 Autoins 200 100 0.150
3 Jiagu 678 578 0.235
! Shedun 10867 10767 0.548
5 Wapron 857 157 0.136
6 Dnotua 136 36 0.583
7 Hiddad 185 85 0.000
8 Secneo 203 103 0.223
9 Triada 299 199 0.005
10 Secapk 155 35 0.055
11 Smspay 281 181 0.028
12 | Qappusin 158 38 0.000

Models to Evaluate

« SOTA, Representative Method (via citation)

TABLE 3: Summary of our selected noise learning methods.

Category Representative Method | State-of-the-art Method
Sample selection Coteaching+[12] Mentormix|[6]
Label sanitization Bootstrap[27] LRT[28]

Loss robustification GCEJ8] ELR|[9]
Noise matrix estimation Noise-adaption[10] LIO[13]

Windows PE Evaluation Results

Average (%)

Class-11 Locky (%)

Methods Accuracy Precision Fh Accuracy Precision Fi
Vanilla DNN 93.08/0.25 | 93.65/0.51 | 92.57/0.36 | 44.33/3.78 | 96.34/4.22 | 60.48/3.22
Coteaching+ 87.39/0.65 | 92.24/0.39 | 87.90/1.13 2.00/2.80 | 9944/1.84 | 3.92/3.16

p=099 | p=0998 | p=0.999 | p=0.999 | p=10.055 p = 0.996

Mentormix 92.34/0.10 | 93.40/0.14 | 92.32/0.28 | 41.17/4.13 | 95.24/1.34 | 57.82/2.14
p=0997 | p=0812 | p=0.322 | p=0.767 | p=10.505 p= 0434

Bootstrap 92.92/0.30 | 93.33/0.23 | 92.27/191 | 46.33/5.15 | 92.71/2.69 | 61.03/2.49
‘ p=0876 | p=0.829 | p=0.503 p=0260 | p=0858 | p=0.191

[RT 92.52/0.21 | 93.38/0.24 | 92.15/0.18 | 42.50/1.50 | 93.85/4.67 | 59.34/2.47
p=0995 | p=0.815 | p=0.817 p=0887 | p=0.753 p = 0.557

Noise-adaption 92.65/0.24 93.25![1.3[1 02.18/0.22 | 40.83/1.46 | 90.04/3.68 | 56.18/2.47
‘ p=0978 | p=0.861 p = 0.488 p=0968 | p=0968 | p=0.687
LIO 92.30/0.35 | 93.21/0.25 | 92.01/0.15 | 38.00/4.04 | 90.12/4.23 | 53.42/1.45
p=09%0 | p=0879 | p=0435 p=0910 | p=0958 | p=0.956

GCE 92.15/0.27 | 93.40/0.32 | 91.74/0.65 | 36.33/740 | 94.85/3.11 | 52.38/5.95
p=0998 | p=0809 | p=0962 | p=0.926 | p=10.705 p = 0.99]

ELR 91.84/0.18 | 93.27/0.24 | 91.20/0.27 | 34.50/2.75 | 96.39/3.37 | 50.01/2.70
p=0999 | p=0882 | p=0.998 p=0999 | p=10493 p = 0.997

Android Evaluation Results

Average (%)

Class-6 Dnotua (%)

Methods Accuracy Precision F Accuracy Precision F1
Vanilla DNN 73.00/0.35 | 78.65/2.21 | 69.96/0.54 | 2.67/5.53 19.79/34.31 4.63/9.52
Coteaching-+ 72.73/0.61 | 75.83/1.76 | 69.44/0.41 0.00/0.00 0.00/0.00 0.00/0.00

p = 0.895 p = 0.949 p = 0.963 p = 0.835 p = 0.873 p = 0.837

Mentormix 75.52/0.24 | 78.20/3.12 | 72.15/0.88 3.75/6.49 | 20.24/31.24 | 6.30/10.18
p = 0.001 p = 0.645 p=0.003 | p=0.767 p = 0.563 p = 0.620

Bootstrap 72.24/0.42 | 77.41/3.94 | 68.97/0.70 | 0.33/0.47 16.67/23.57 0.65/0.92
p=0993 | p=0738 | p=0999 | p=03817 p = 0.591 p = 0.816

RT 72.07/0.49 | 79.02/3.15 | 69.15/0.87 2.50/5.59 15.62/34.94 4.31/9.64

p = 0.991 p=0416 | p=0933 | p=0.517 p = 0.574 p = 0.519

Noise-adaption 74.73/0.80 | 78.33/3.01 | 71.62/0.82 | 5.50/7.46 | 39.17/41.87 | 9.40/12.63
p=0.003 | p=0.605 p=0004 | p=0.132 p=0.114 p = 0.138

LIO 72.56/0.41 | 80.02/2.83 | 72.78/1.00 | 3.00/5.86 | 25.00/38.19 | 5.24/10.09
p=03838 | p=0.233 | p=0.001 | p=0.468 p = 0417 p = 0.466

GCE 72.67/0.95 | 78.90/3.98 | 69.90/0.87 5.00/7.00 | 32.29/45.70 | 8.66/12.24
p=0710 | p=0459 | p=0539 | p=0.314 p = 0.333 p=0.314

EI R 70.99/0.12 | 76.46/0.77 | 67.62/0.25 0.00/0.00 0.00/0.00 0.00/0.00
p=0999 | p=0967 | p=0999 | p=0.835 p = 0.873 p = 0.837

Hypothesis

« #1 Performance degradation is due to highly skewed dataset.
(Locky Dnotua, both are smallest class in the dataset)

« #2 High noise rate reduces the number of clean samples
useful for classifier training
(Locky Dnotua have high noise rate 54%, 58.3%)

Hypothesis Test

« Synthetic Dataset form BODMAS (57293 samples 581 families)

e #1 Skewed

« Remove proportion of families obtain two dataset with different
iImbalance (20x and 100x)

« #2 High Noise Rate

« Randomly change the label for each dataset
(30% and 60%)

Noise rate 0.3 and imbalance ratio 20x

Noise rate 0.3 and imbalance ratio 100x

Methods Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision Fy Accuracy Precision I3 Accuracy Precision I3 Accuracy Precision B
Vanilla DNN 75.55/1.38 | 82.94/3.78 | 73.46/0.90 | 57.89/3.69 85.74/6.65 63.03/1.20 | 70.83/0.87 | 76.29/0.85 | 67.80/1.19 48.45/1.44 79.47/0.62 56.77/0.24
Coteaching+ 74.49/2.56 | 78.23/1.45 | 72.79/1.25 | 56.71/3.08 77.92/2.50 62.09/1.03 | 69.25/0.92 | 74.63/3.38 | 67.02/1.95 45.57/3.68 75.96/7.39 53.85/4.53
p=0.738 p = 0951 p = 0.683 p=0.715 p = 0.952 p = 0.871 p = 0.977 p = 0.863 p= 0817 p = 0.891 p = 0.834 p = 0.898
MentorMix 77.58/0.70 | 80.80/1.05 | 74.15/1.13 | 62.77/1.14 79.52/1.02 63.85/1.02 | 72.58/0.56 | 75.25/0.24 | 67.51/0.10 48.54/1.06 78.86/0.83 56.73/1.02
p=0.043 p=0.715 p = 0.052 p = 0.058 p = 0.893 p = 0.082 p = 0.020 p = 0.998 p=0.738 p = 0.430 p = 0.975 p = 0481
Bootstrap 75.17/1.43 | 78.80/1.05 | 72.78/1.13 | 58.58/3.00 77.55/1.79 62.11/2.10 | 70.30/0.66 | 76.45/0.74 | 67.55/1.24 49.24/1.18 79.65/0.56 56.51/1.46
p = 0.624 p = 00934 p = 0.826 p = 0.398 p = 0.940 p =0.992 p = 0.970 p = 0.362 p = 0.637 p = 0.947 p = 0.082 p = 0.662
LRT 73.17/2.16 | 78.41/0.61 | 72.30/1.11 | 58.30/3.66 78.25/1.10 62.33/0.88 | 65.17/5.24 | 74.18/3.94 | 64.42/4.93 40.01/8.61 77.63/4.04 51.71/6.40
p = 0927 p = 0951 p = 0.928 p = 0.398 p=00934 p = 0.776 p = 0.992 p = 0.871 p = 00923 p = 0.994 p = 0.809 p = 0.935
Noise-adaption 77.75/0.66 | 80.44/1.06 | 74.13/1.33 | 62.50/0.98 79.02/2.68 63.73/1.56 | 72.56/1.41 | 75.59/0.81 67.30/1.51 50.81/2.90 79.21/0.57 56.76/0.79
* p = 0016 p = 0.846 p = 0.066 p = 0.028 p = 0.943 p = 0.096 p = 0.006 p = 0.846 p = 0.691 p = 0.075 p = 0.975 p = 0.504
L10 75.72/1.78 | 81.19/2.74 | 72.73/0.75 | 60.19/1.04 84.40/6.52 63.61/2.44 | 70.06/2.34 | 75.12/2.35 | 65.80/1.12 46.25/5.68 79.65/0.30 52.72/0.28
p = 0.825 p = 0.642 p = 0.883 p=0.114 p = 0479 p = 0.238 p = 1.000 p = 0.852 p = 0.992 p = 0.798 p = 0.306 p = 0.987
GCE 76.98/1.49 | 81.52/3.26 | 73.68/1.74 | 59.08/4.09 82.89/5.96 62.67/2.38 | 70.83/2.21 | 73.25/7.41 66.94/3.21 47.58/3.32 72.31/14.53 53.49/6.24
p=0.113 p = 0.594 p = 0.287 p = 0.350 p=0.0614 p = 0.540 p = 0.504 p=0.793 p = 0.704 p = 0.728 p = 0.836 p = 0.848
ELR 74.28/0.69 | 84.60/1.20 | 72.05/1.38 | 53.58/2.10 02.02/1.57 60.82/1.97 | 66.84/1.66 | 65.70/0.13 | 61.00/0.40 42.33/3.37 59.46/0.57 44.90/0.77
p=0.953 p = 0.077 p = 0.899 p = 0.982 p = 0.027 p = 0.944 p = 0.998 p=1000 | p=0.999 p = 0.987 p = 1.000 p = 1.000
Noise rate 0.6 and imbalance ratio 20x Noise rate 0.6 and imbalance ratio 100x
Methods Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision Fy Accuracy Precision I3 Accuracy Precision I3 Accuracy Precision I3
Vanilla DNN 68.04/1.77 | 70.38/6.31 | 63.68/4.12 | 48.93/4.03 73.16/9.31 53.39/7.05 | 65.57/0.87 | 71.67/3.30 | 61.11/0.89 44.39/1.94 76.67/7.45 51.02/1.56
Coteaching+ 61.20/4.81 58.92/5.03 | 54.73/4.60 | 33.64/6.49 55.50/9.97 39.84/8.42 | 50.85/7.03 | 37.47/4.82 | 41.93/4.07 10.37/14.67 16.38/7.34 15.33/6.87
p=0.993 p = 0.997 p = 0.998 p = 0.998 p = 0.997 p = 0.997 p = 0.997 p=1000 | p=0.999 p = 0.998 p = 1.000 p = 1.000
MentorMix 69.11/0.74 | 75.05/1.05 | 63.28/1.03 | 51.40/2.28 77.55/3.79 S58.11/2.10 | 55.28/1.50 | 76.45/0.74 | 57.55/1.24 19.96/2.34 77.58/4.01 30.51/3.46
p=10.129 p= 00934 p = 0.826 p = 0.376 p = 0.151 p=0.124 p = 0.998 p = 0.362 p = 0.999 p = 0.999 p = 0.082 p = 0.999
Bootstrap 68.94/1.40 | 71.12/4.69 | 64.81/2.92 | 50.03/5.04 71.35/8.21 55.56/7.42 | 65.83/1.50 | 72.73/0.67 | 60.89/1.10 45.66/2.09 79.95/0.07 50.30/1.21
p=0.174 p = 0431 p = 0.328 p = 0.370 p = 0.602 p = 0.346 p =0.316 p=0.253 p = 0.669 p=0.182 p=0.184 p=0.784
LRT 64.97/2.70 | 70.83/2.85 | 61.18/4.68 | 48.40/3.06 78.15/1.91 54.61/2.64 | 55.51/5.83 | 57.23/6.02 | 47.04/5.76 | 26.78/11.11 | 59.15/10.55 | 29.60/10.03
p = 0.982 p = 0.453 p = 0.759 p = 0.643 p = 0.168 p = 0.380 p = 0.992 p=0.993 p = 0.998 p = 0.994 p = 0.962 p = 0.997
Noise-adaption 70.62/3.54 | 77.15/2.84 | 66.75/2.11 | 53.65/7.79 83.70/4.08 58.07/3.34 | 66.20/1.79 | 72.04/3.48 | 62.01/1.18 44 .82/2.55 75.80/7.18 53.60/2.67
* p = 0.130 p = 0.021 p = 0.141 p = 0.155 p = 0.010 p = 0.146 p=0.196 p = 0443 p=0.120 p = 0.380 p = 0.563 p = 0.101
L10 68.54/297 | 73.43/2.67 | 64.63/2.40 | 48.73/6.64 77.28/3.51 57.39/3.04 | 52.54/5.26 | 56.90/7.90 | 45.92/6.74 24.53/9.29 57.12/15.47 | 27.23/14.41
p = 0.390 p = 0.167 p = 0.311 p=0.517 p=0.171 p = 0.133 p = 1.000 p = 0.997 p = 0.998 p = 0.997 p = 0.980 p = 0.993
GCE 57.38/4.32 | 53.55/6.63 | 50.76/6.05 | 29.01/7.37 | 45.59/10.18 | 32.45/7.67 | 47.15/0.35 | 27.53/1.75 | 33.92/1.02 0/0 0/0 0/0
p = 0.996 p = 0.993 p = 0.992 p = 0.997 p = 0.994 p = 0.995 p = 1.000 p=1.000 | p=1.000 p = 1.000 p = 1.000 p = 1.000
ELR 68.19/1.93 | 68.62/5.42 | 62.58/3.58 | 43.55/4.02 66.42/9.61 48.51/5.95 | 63.65/0.53 | 60.18/5.11 58.69/1.41 36.13/1.07 50.00/10.00 40.00/2.46
p = 0430 p=0.727 p=0.719 p = 0.985 p=0914 p=0917 p = 0.994 p = 0.998 p = 0.999 p = 1.000 p = 0.999 p = 1.000

Malware != Images

* Highly Skewed and High Noise Rate in Malware dataset
require different noise learning approach

« MORSE

« Semi Supervised learning method + Sample re-weighting
Mechanism

Semi Supervised
Learning: FixMatch

* Tailored for Image Recognition

* Partition labeled and unlabeled
datasets

« Weakly augment (flip, shift)
unlabeled data

* Predict labels for unlabeled data
(pseudo labels)

» Calculate Both supervised,
unsupervised loss

» Calculate Final Loss and update
model’s weights

Algorithm 1: FixMatch — the state-of-the-art semi-
supervised learning algorithm.

1

2

3
4
5

6

10
11
12

13
14

15
16
17

Input: labeled dataset X', unlabeled dataset i,
number of total training epochs K, confidence
threshold 7, unsupervised loss weight \.

Initialization: Initialize the weights © for the
model f(-) randomly.

for k=0,1,2,..., K do

for iter = 1,2, ..., num_batches do

From X', draw a mini-batch
{(xv, 1) : b€ (1,...,B)}

From U4, draw a mini-batch
{up:be(1,....B,)}

for b=1,2,..., B, do

a = f(g(up); ©)
p = arg max(qp)

end

Lo= 5 Sy Hlp, F(9(x)))

Lo = 7 Y, T(max(qp) >
) H (G, f(h(w))

L=Ls+ Ny,

Update the model’s weights ® by
minimizing the loss function £

end

end
Output: the well trained model f(-;©).

MORSE

* FixMatch -> MORSE
« Change design to suit Malware Classification (Augmentation)
« Add Sample Re-weighting

Algorithm 2: Proposed learning algorithm. The
customized and extended parts are highlighted.

1 Input: imbalanced noisy training dataset D),
number of total training epochs K, labeled data’s
proportion d, starting re-weighting epoch T,
confidence threshold 7, unsupervised loss weight
A, learning rate .

2 Initialization: Initialize the weights © for the
model f(-) by using entire dataset D with only a
few epochs.

3 for k=0,1.2,.... K do

4 Partitioning the training dataset D into labeled

dataset X and unlabeled dataset U4: select the

top d% examples with the least loss values
from each given class and treat them as labeled
data and the rest as unlabeled data.

for iter = 1,2, ..., num_batches do

From X', draw a mini-batch
{(Xb:yb) b€ (1 B)}'

7 From U, draw a mini-batch

{ub b€ (11 Bﬁ)}

8 for b=1,2,...,B, do

9 /l Use Eqgn. (3) to perform weak
augmentation against u,

10 a» = f(g(u); ©)

1 q» = arg max(qp)

12 end

13
14

15
16

17

18
19

20

21
22

23

24
25
26
27

28
29
30
31

if £ < T, then

/l Use Eqn. (3) to perform weak
augmentation against x;

Lo= 5> H(y, f9(x)))

/l Use Eqn. (3) to perform strong
augmentation against u

B
Ly = BLi 2 ey I(max(qp) >

/

e) H (q, f(h(1s)))

/I Calculate the weight of each training
sample using Eqn. (4)

/l Use Eqn. (3) to perform weak
augmentation against X

Lo= 53 woH (s, F(9(x)))

/l Use Eqn. (3) to perform strong
augmentation against u

Lur = 5= 252 (max(qs) > 7)
I-:u — fvul + ‘IﬂbH((ﬁ), f(h’(ub)))

end

L=L;+ AL,

Update the model’s weights © by
minimizing the loss function £

Optional: decay the learning rate o

end

end
Output: the well trained model f(-; ©).

Selecting a Label

« Assume a pretrained model (At initialization)

« Each Epoch we determine labeled and unlabeled data
 Calculate loss, top d% samples with least loss -> labeled dataset

Weak & Strong augmentation

« Mask vector [mi,...,md" € R? Bernoulli distribution
» Replace features with from X

* Where, X is sampled from the entire dataset

X=xGm+ (1l —m)oXx.

Sample Re-Weighting

« Handle Class imbalance (weigh the loss differently depending on
whether they belong to majority or minority class)

« Samples associated with minor class is assigned higher weight

1 — B"w
By, = —.
b 1-p
n,, is the number of samples in class y;,, and 3 € [0,1) is
a hyperparameter. Using its inverse (i.e., wp = E1), we

(4)

can extend the loss shown in Equation (1) and (2) as
B

Lg= %Z“«’hff(yhaf(g(xb)));

b=1

1 ~
L, = B— Z Illd}{ qb)TIJ{)II({}&} f(h(llb))).

(5)

-.-..
k

Synthetic Dataset

TABLE 7: The testing performance of the models learned from MORSE and Vanilla method on the synthetic dataset.

Noise rate 0.3 and imbalance ratio 20x

Noise rate 0.3 and imbalance ratio 100x

Methods Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision Ik Accuracy Precision Fiy Accuracy Precision Fy Accuracy Precision Fy
Vanilla DNN 75.55/1.38 | 82.94/3.78 | 73.46/0.90 | 57.89/3.69 | 85.74/6.65 | 63.03/1.20 | 70.83/0.87 | 76.29/0.85 | 67.80/1.19 | 48.45/1.44 | 79.47/0.62 | 56.77/0.24
Vanilla DNN 78.87/0.30 | 82.64/0.88 | 77.71/0.44 | 68.59/2.29 | 80.75/2.44 | 69.63/1.03 | 72.85/1.79 | 75.97/0.98 | 69.86/1.74 | 56.81/4.63 | 76.44/1.89 | 60.88/2.64
w re-weighting p = 0.000 p = 0.335 p = 0.000 p = 0.000 p = 0.878 p = 0.000 p = 0.083 p = 0.656 p = 0.049 p = 0.009 p = 0.988 p = 0.008
Our method 79.64/0.83 | 87.81/1.68 | 77.61/1.01 | 64.85/2.62 | 94.46/2.31 | 70.00/2.70 | 71.73/2.24 | 73.38/494 | 65.87/3.16 | 46.84/3.98 | 72.99/9.19 | 50.54/5.68
w/o re-weighting | p = 0.000 p = 0.011 p = 0.000 p = 0.001 p = 0.009 p = 0.000 p=0.138 p = 0.900 p = 0.891 p = 0.752 p = 0917 p=0972
Our method 79.73/1.85 | 87.11/1.82 | 79.11/1.30 | 67.47/3.17 | 88.45/4.63 | 70.76/3.42 | 73.47/091 | 78.97/2.11 | 70.42/1.02 | 54.40/7.97 | 82.59/3.85 | 62.30/5.55
p = 0.008 p=0039 | p=0.000 | p=0006 | p=0.182 | p=0.002 p = 0.001 p=0027 | p=0.007 | p=0.092 | p=0.071 p = 0.040
Noise rate 0.6 and imbalance ratio 20x Noise rate (.6 and imbalance ratio 100x
Methods Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision 1 Accuracy Precision Fi Accuracy Precision Fi Accuracy Precision Fy
Vanilla DNN 68.04/1.77 | 70.38/6.31 | 63.68/4.12 | 48.93/4.03 | 73.16/9.31 | 53.39/7.05 | 65.57/0.87 | 71.67/3.30 | 61.11/0.89 | 44.39/1.94 | 76.67/7.45 | 51.02/1.56
Vanilla DNN 68.01/1.52 | 70.65/2.95 | 65.52/2.68 | 58.50/2.59 | 67.70/5.18 | 57.18/3.31 66.84/2.36 | 67.22/2.28 | 64.34/2.33 | 55.85/4.36 | 61.15/4.13 | 56.36/4.29
w re-weighting p = 0.464 p = 0.448 p=0.184 p = 0.011 p = 0.960 p = 0.106 p=0.137 p = 0.979 p = 0.021 p = 0.001 p = 0.996 p = 0.037
Our method 72.82/2.86 | 77.24/1.69 | 69.42/2.61 | 54.09/3.96 | 81.00/1.34 | 60.26/2.85 | 64.85/4.83 | 65.85/5.03 | 58.93/2.81 38.65/9.12 | 66.67/8.43 | 42.38/6.12
w/o re-weighting | p = 0.012 p = 0.050 p = 0.038 p = 0.051 p = 0.061 p = 0.041 p = 0.624 p = 0.927 p = 0.988 p = 0.895 p = 0.898 p = 0.987
Our method 76.20/0.59 | 79.45/1.69 | 72.90/1.17 | 61.21/1.00 | 80.45/0.99 | 64.25/0.20 | 72.05/1.94 | 7497/3.41 | 68.03/1.01 | 53.82/498 | 76.60/7.48 | 58.00/3.80
p=0000 | p=0.016 | p=0.003 | p=0000 | p=0.066 | p=0.009 | p=0.000 | p=0005 | p=0.000 | p=0.005 | p=0.891 | p=0.003

PE and Android Dataset

TABLE &8: MORSE vs. Vanilla method on the PE dataset.

Average (%)

Class-11 (%)

Methods Accuracy Precision 13 Accuracy Precision £
Vanilla DNN 93.08/0.25 | 93.65/0.51 | 92.57/0.36 | 44.33/3.78 | 96.34/4.22 | 60.48/3.22
Vanilla DNN 03.82/0.29 | 94.01/0.30 | 93.50/0.34 | 55.67/2.98 | 89.71/2.30 | 68.61/1.70

w re-weighting p = 0.003 p=0.102 p = 0.001 p = (0.001 p = 0974 p = 0.001
Our method 92.50/0.18 | 93.35/0.28 | 91.33/0.58 | 36.50/2.75 | 99.51/1.10 | 51.07/5.05
w/o re-weighting p = 0.980 p = 0924 p = 0.992 p = (0.995 p = (0.089 p = 0979
Our method 94.15/0.43 | 94.14/0.57 | 93.91/0.67 | 65.33/4.20 | 90.18/2.08 | 76.74/1.22
p=0003 | p=0.061 | p=0.000 | p=0.000 | p=0984 | p=0.000

TABLE 9: MORSE vs. Vanilla on the Android dataset.

Average (%)

Class-6 (%)

Methods Accuracy Precision Fy Accuracy Precision Fy
Vanilla DNN 73.00/0.35 | 78.65/2.21 | 69.96/0.54 2.67/5.53 19.79/34.31 4.63/9.52
Vanilla DNN T77.32/1.72 | 82.20/3.73 | 75.68/2.58 | 20.83/7.99 80.39/9.40 | 32.03/8.99

w re-weighting p = 0.002 p = 0.049 p = 0.003 p = 0.007 p = 0.003 p = 0.005
Our method 74.58/0.86 | 77.33/4.47 | 71.00/0.96 5.17/7.31 32.35/45.79 | 8.91/12.60
w/o re-weighting p = 0.004 p = 0.691 p = 0.015 p = 0.309 p = (0.347 p = 0.311
Our method 79.76/1.02 | 80.37/1.99 | 78.72/1.22 | 27.67/8.01 | 58.54/18.90 | 35.80/7.88
p=0.000 | p=0088 | p=0.000 | p=0.000 p = 0.039 p = 0.000

	Slide 1: From Grim Reality to Practical Solution: Malware Classification in Real-World Noise
	Slide 2: Labels in Malware
	Slide 3: Overview
	Slide 4: Noise Learning
	Slide 5
	Slide 6: Label Sanitization
	Slide 7: Loss Robustification
	Slide 8: Noise Matrix Estimation
	Slide 9: Sample Selection
	Slide 10: Evaluation of Existing Methods
	Slide 11: Dataset
	Slide 12: Windows PE Dataset
	Slide 13
	Slide 14: Android Dataset
	Slide 15
	Slide 16: Models to Evaluate
	Slide 17: Windows PE Evaluation Results
	Slide 18: Android Evaluation Results
	Slide 19: Hypothesis
	Slide 20: Hypothesis Test
	Slide 21
	Slide 22: Malware != Images
	Slide 23: Semi Supervised Learning: FixMatch
	Slide 24: MORSE
	Slide 25
	Slide 26: Selecting a Label
	Slide 27: Weak & Strong augmentation
	Slide 28: Sample Re-Weighting
	Slide 29: Synthetic Dataset
	Slide 30: PE and Android Dataset

