From Grim Reality to Practical Solution: Malware Classification in Real-World Noise

S&P '23

Labels in Malware

- Key assumption in DL technique: Sufficient Training data with correct labels
- Incorrectly labeled Malware sample -> prevalent

Overview

- Propose MORSE (Malware classificatiOn fRom noiSy labEls)
- Analyze previous Noise Learning Solution's limitation in the context of Malware
- Noise Learning Solution tailored for Malware

Noise Learning

- Two Major Types
 - #1 Use all noisy data
 - #2 Use some noisy data
- Previous Works use the following 4 techniques
- Use all
 - Label Sanitization
 - Loss Robustification
 - Noise Matrix Estimation
- Use some
 - Sample Selection

(a) Sample selection selects samples possibly correctly labeled and then learns the decision boundary.

(c) Loss robustification uses a new, robust loss function to learn the decision boundary.

(b) Label sanitization corrects mistakenly labeled samples and then learns the decision boundary.

(d) Noise matrix estimation learns a transition matrix (" \mathbf{T} ") and then uses it to correct the inaccurate decision boundary.

Figure 1: The demonstration of existing noise learning methods in binary classification. Each geometry pattern represents a sample. The circle and triangle pattern indicates the different label of the sample. The geometry with a cross indicates the sample is incorrectly labeled. For example, circle with a cross denotes the sample is mistakenly labeled as "circle" and its true label should be "triangle". In each subfigure, the left shows the decision boundary learned directly from the noisy training dataset, whereas the right depicts the decision boundary learned by the corresponding noise learning method.

Label Sanitization

- Uses all entire noisy dataset for training
- Corrects Labels to offset their negative impact
- Research show incorrectly labeled data impact loss function differently

(b) Label sanitization corrects mistakenly labeled samples and then learns the decision boundary.

Loss Robustification

- Uses the entire noisy dataset
- Incorrect labels impacts loss function differently
- Propose a new loss function robust against noisy labels

(c) Loss robustification uses a new, robust loss function to learn the decision boundary.

Noise Matrix Estimation

- Learn a transition matrix from entire noisy dataset
- Transition Matrix could flip incorrect prediction results made by the model trained on noisy training datasets.

(d) Noise matrix estimation learns a transition matrix ("T") and then uses it to correct the inaccurate decision boundary.

Sample Selection

- Minimize the impact of noisy labels
 - Identify incorrectly labeled samples
 - Eliminate or downplay the noisy samples from model training procedure

(a) Sample selection selects samples possibly correctly labeled and then learns the decision boundary.

Evaluation of Existing Methods

Dataset

- Windows PE dataset
- Android Dataset

• How do we know noise rate?

of Training Noise rate ID Family **#** of Samples samples in training set 0 Benign 500 400 0.000 VirLock 900 800 0.005 1 2 WannaCry 920 820 0.002 3 Upatre 440 340 0.032 4 1044 944 0.156 Cerber Urelas 572 5 472 0.011 WinActivator 166 66 0.106 6 7 744 644 0.019 Pykspa Ramnit 324 224 0.295 8 608 9 Gamarue 508 0.750

TABLE 1: Statistics of the Windows PE malware dataset.

TABLE 2: The statistics of the Android malware dataset.

199

57

0.472

0.544

299

157

InstallMonster

Locky

10

11

Ш	Fomily	# of Samples	# of Training	Noise rate	
ID	ганну	# of Samples	samples	in training set	
0	Smserg	2687	2587	0.040	
1	Benign	4683	4583	0.699	
2	Autoins	200	100	0.150	
3	Jiagu	678	578	0.235	
4	Shedun	10867	10767	0.548	
5	Wapron	857	757	0.136	
6	Dnotua	136	36	0.583	
7	Hiddad	185	85	0.000	
8	Secneo	203	103	0.223	
9	Triada	299	199	0.005	
10	Secapk	155	55	0.055	
11	Smspay	281	181	0.028	
12	Qappusin	158	58	0.000	

Windows PE Dataset

- We assume the labels are 100% accurate (500 benign, 6174 malicious)
 - Obtained from security lab
 - Carefully analyzed by at least three security analyst with 5+ years of experience
- Generation of noisy labels
 - Used VirusTotal
 - Upload all executables to VirusTotal (discovered 11.38% of PE files provided had at least one wrong label by a vendor)
 - Randomly change the label to what the vendor provided (noisy label)

TABLE 1: Statistics of the V	Windows PE	malware dataset.
------------------------------	------------	------------------

Ш	Family	# of Samples	# of Training	Noise rate
ID	ганну	# of Samples	samples	in training set
0	Benign	500	400	0.000
1	VirLock	900	800	0.005
2	WannaCry	920	820	0.002
3	Upatre	440	340	0.032
4	Cerber	1044	944	0.156
5	Urelas	572	472	0.011
6	WinActivator	166	66	0.106
7	Pykspa	744	644	0.019
8	Ramnit	324	224	0.295
9	Gamarue	608	508	0.750
10	InstallMonster	299	199	0.472
11	Locky	157	57	0.544

Android Dataset

- VirusShare2018, 4683 benign 16706 android malware
- Difficult to check label correctness in this case
- Generation of noisy labels
 - Automatically obtained noisy labels through Virus Total
 - Upload to VT, correct label: majority vote between vendors
 - Noisy Label: from one vendor (Ikarus)

TABLE 2: The statistics of the Android malware dataset.

m	Family	# of Somplos	# of Training	Noise rate	
ID	гаппу	# of Samples	samples	in training set	
0	Smserg	2687	2587	0.040	
1	Benign	4683	4583	0.699	
2	Autoins	200	100	0.150	
3	Jiagu	678	578	0.235	
4	Shedun	10867	10767	0.548	
5	Wapron	857	757	0.136	
6	Dnotua	136	36	0.583	
7	Hiddad	185	85	0.000	
8	Secneo	203	103	0.223	
9	Triada	299	199	0.005	
10	Secapk	155	55	0.055	
11	Smspay	281	181	0.028	
12	Qappusin	158	58	0.000	

Models to Evaluate

• SOTA, Representative Method (via citation)

Category	Representative Method	State-of-the-art Method
Sample selection	Coteaching+[12]	Mentormix[6]
Label sanitization	Bootstrap[27]	LRT[28]
Loss robustification	GCE[8]	ELR[9]
Noise matrix estimation	Noise-adaption[10]	LIO[13]

TABLE 3: Summary of our selected noise learning methods.

Windows PE Evaluation Results

Methods		Average (%)		Class-11 Locky (%)			
Methous	Accuracy	Precision	F_1	Accuracy	Precision	F_1	
Vanilla DNN	93.08/0.25	93.65/0.51	92.57/0.36	44.33/3.78	96.34/4.22	60.48/3.22	
Cotesching	87.39/0.65	92.24/0.39	87.90/1.13	2.00/2.89	99.44/1.84	3.92/3.16	
Coleaching+	p = 0.999	p = 0.998	p = 0.999	p = 0.999	p = 0.055	p = 0.996	
Montormiy	92.34/0.10	93.40/0.14	92.32/0.28	41.17/4.13	95.24/1.34	57.82/2.14	
WICHTOTHIX	p = 0.997	p = 0.812	p = 0.322	p = 0.767	p = 0.505	p = 0.434	
Pootstrop	92.92/0.30	93.33/0.23	92.27/1.91	46.33/5.15	92.71/2.69	61.03/2.49	
Bootstrap	p = 0.876	p = 0.829	p = 0.503	p = 0.260	p = 0.858	p = 0.191	
IPT	92.52/0.21	93.38/0.24	92.15/0.18	42.50/1.50	93.85/4.67	59.34/2.47	
LKI	p = 0.995	p = 0.815	p = 0.817	p = 0.887	p = 0.753	p = 0.557	
Noise adaption	92.65/0.24	93.25/0.30	92.18/0.22	40.83/1.46	90.04/3.68	56.18/2.47	
Noise-adaption	p = 0.978	p = 0.861	p = 0.488	p = 0.968	p = 0.968	p = 0.687	
LIO	92.30/0.35	93.21/0.25	92.01/0.15	38.00/4.04	90.12/4.23	53.42/1.45	
LIO	p = 0.990	p = 0.879	p = 0.435	p = 0.910	p = 0.958	p = 0.956	
GCE	92.15/0.27	93.40/0.32	91.74/0.65	36.33/7.40	94.85/3.11	52.38/5.95	
OCL	p = 0.998	p = 0.809	p = 0.962	p = 0.926	p = 0.705	p = 0.991	
FIP	91.84/0.18	93.27/0.24	91.20/0.27	34.50/2.75	96.39/3.37	50.01/2.70	
LLK	p = 0.999	p = 0.882	p = 0.998	p = 0.999	p = 0.493	p = 0.997	

Android Evaluation Results

Methods		Average (%)		Class-6 Dnotua (%)			
wienious	Accuracy	Precision	F_1	Accuracy	Precision	F_1	
Vanilla DNN	73.00/0.35	78.65/2.21	69.96/0.54	2.67/5.53	19.79/34.31	4.63/9.52	
Coteaching	72.73/0.61	75.83/1.76	69.44/0.41	0.00/0.00	0.00/0.00	0.00/0.00	
Coleaching+	p = 0.895	p = 0.949	p = 0.963	p = 0.835	p = 0.873	p = 0.837	
Mentormiy	75.52/0.24	78.20/3.12	72.15/0.88	3.75/6.49	20.24/31.24	6.30/10.18	
WICHTOTHIX	p = 0.001	p = 0.645	p = 0.003	p = 0.767	p = 0.563	p = 0.620	
Bootstran	72.24/0.42	77.41/3.94	68.97/0.70	0.33/0.47	16.67/23.57	0.65/0.92	
Dootstrap	p = 0.993	p = 0.738	p = 0.999	p = 0.817	p = 0.591	p = 0.816	
IPT	72.07/0.49	79.02/3.15	69.15/0.87	2.50/5.59	15.62/34.94	4.31/9.64	
LINI	p = 0.991	p = 0.416	p = 0.933	p = 0.517	p = 0.574	p = 0.519	
Noise-adaption	74.73/0.80	78.33/3.01	71.62/0.82	5.50/7.46	39.17/41.87	9.40/12.63	
	p = 0.003	p = 0.605	p = 0.004	p = 0.132	p = 0.114	p = 0.138	
LIO	72.56/0.41	80.02/2.83	72.78/1.00	3.00/5.86	25.00/38.19	5.24/10.09	
LIO	p = 0.838	p = 0.233	p = 0.001	p = 0.468	p = 0.417	p = 0.466	
GCE	72.67/0.95	78.90/3.98	69.90/0.87	5.00/7.00	32.29/45.70	8.66/12.24	
UCL	p = 0.710	p = 0.459	p = 0.539	p = 0.314	p = 0.333	p = 0.314	
EI D	70.99/0.12	76.46/0.77	67.62/0.25	0.00/0.00	0.00/0.00	0.00/0.00	
	p = 0.999	p = 0.967	p = 0.999	p = 0.835	p = 0.873	p = 0.837	

Hypothesis

- #1 Performance degradation is due to highly skewed dataset. (Locky Dnotua, both are smallest class in the dataset)
- #2 High noise rate reduces the number of clean samples useful for classifier training (Locky Dnotua have high noise rate 54%, 58.3%)

Hypothesis Test

- Synthetic Dataset form BODMAS (57293 samples 581 families)
- #1 Skewed
 - Remove proportion of families obtain two dataset with different imbalance (20x and 100x)
- #2 High Noise Rate
 - Randomly change the label for each dataset (30% and 60%)

	Noise rate 0.3 and imbalance ratio 20						Noise rate 0.3 and imbalance ratio 100x					
Methods	Overall cls (%)			Rare cls (%)			Overall cls (%)			Rare cls (%)		
	Accuracy	Precision	F_1	Accuracy	Precision	F_1	Accuracy	Precision	F_1	Accuracy	Precision	F_1
Vanilla DNN	75.55/1.38	82.94/3.78	73.46/0.90	57.89/3.69	85.74/6.65	63.03/1.20	70.83/0.87	76.29/0.85	67.80/1.19	48.45/1.44	79.47/0.62	56.77/0.24
Coteaching+	74.49/2.56	78.23/1.45	72.79/1.25	56.71/3.08	77.92/2.50	62.09/1.03	69.25/0.92	74.63/3.38	67.02/1.95	45.57/3.68	75.96/7.39	53.85/4.53
Coteaching+	p = 0.738	p = 0.951	p = 0.683	p = 0.715	p = 0.952	p = 0.871	p = 0.977	p = 0.863	p = 0.817	p = 0.891	p = 0.834	p = 0.898
MentorMix	77.58/0.70	80.80/1.05	74.15/1.13	62.77/1.14	79.52/1.02	63.85/1.02	72.58/0.56	75.25/0.24	67.51/0.10	48.54/1.06	78.86/0.83	56.73/1.02
WICHTOHWITZ	p = 0.043	p = 0.715	p = 0.052	p = 0.058	p = 0.893	p = 0.082	p = 0.020	p = 0.998	p = 0.738	p = 0.430	p = 0.975	p = 0.481
Bootstran	75.17/1.43	78.80/1.05	72.78/1.13	58.58/3.00	77.55/1.79	62.11/2.10	70.30/0.66	76.45/0.74	67.55/1.24	49.24/1.18	79.65/0.56	56.51/1.46
Bootstrap	p = 0.624	p = 0.934	p = 0.826	p = 0.398	p = 0.940	p = 0.992	p = 0.970	p = 0.362	p = 0.637	p = 0.947	p = 0.082	p = 0.662
I PT	73.17/2.16	78.41/0.61	72.30/1.11	58.30/3.66	78.25/1.10	62.33/0.88	65.17/5.24	74.18/3.94	64.42/4.93	40.01/8.61	77.63/4.04	51.71/6.40
LINI	p = 0.927	p = 0.951	p = 0.928	p = 0.398	p = 0.934	p = 0.776	p = 0.992	p = 0.871	p = 0.923	p = 0.994	p = 0.809	p = 0.935
Noise adaption	77.75/0.66	80.44/1.06	74.13/1.33	62.50/0.98	79.02/2.68	63.73/1.56	72.56/1.41	75.59/0.81	67.30/1.51	50.81/2.90	79.21/0.57	56.76/0.79
Noise-adaption	p = 0.016	p = 0.846	p = 0.066	p = 0.028	p = 0.943	p = 0.096	p = 0.006	p = 0.846	p = 0.691	p = 0.075	p = 0.975	p = 0.504
LIO	75.72/1.78	81.19/2.74	72.73/0.75	60.19/1.04	84.40/6.52	63.61/2.44	70.06/2.34	75.12/2.35	65.80/1.12	46.25/5.68	79.65/0.30	52.72/0.28
LIO	p = 0.825	p = 0.642	p = 0.883	p = 0.114	p = 0.479	p = 0.238	p = 1.000	p = 0.852	p = 0.992	p = 0.798	p = 0.306	p = 0.987
CCF	76.98/1.49	81.52/3.26	73.68/1.74	59.08/4.09	82.89/5.96	62.67/2.38	70.83/2.21	73.25/7.41	66.94/3.21	47.58/3.32	72.31/14.53	53.49/6.24
UCL	p = 0.113	p = 0.594	p = 0.287	p = 0.350	p = 0.614	p = 0.540	p = 0.504	p = 0.793	p = 0.704	p = 0.728	p = 0.836	p = 0.848
FLD	74.28/0.69	84.60/1.20	72.05/1.38	53.58/2.10	92.02/1.57	60.82/1.97	66.84/1.66	65.70/0.13	61.00/0.40	42.33/3.37	59.46/0.57	44.90/0.77
LLK	p = 0.953	p = 0.077	p = 0.899	p = 0.982	p = 0.027	p = 0.944	p = 0.998	p = 1.000	p = 0.999	p = 0.987	p = 1.000	p = 1.000
	Noise rate 0.6 and imbalance ratio 20x											
		Noise	rate 0.6 and	imbalance ra	tio 20x			Noise	rate 0.6 and	imbalance rat	io 100x	
Methods	(Noise Overall cls (%)	rate 0.6 and	imbalance ra	tio 20x Rare cls (%)		(Noise Overall cls (%)	rate 0.6 and	imbalance rat	io 100x Rare cls (%)	
Methods	Accuracy	Noise Overall cls (% Precision	rate 0.6 and) <i>F</i> ₁	imbalance ra Accuracy	tio 20x Rare cls (%) Precision	F_1	Accuracy	Noise Overall cls (% Precision	• rate 0.6 and	imbalance rat	io 100x Rare cls (%) Precision	F_1
Methods Vanilla DNN	Accuracy 68.04/1.77	Noise Overall cls (% Precision 70.38/6.31	rate 0.6 and) <i>F</i> ₁ 63.68/4.12	imbalance ra Accuracy 48.93/4.03	tio 20x Rare cls (%) Precision 73.16/9.31	<i>F</i> ₁ 53.39/7.05	(Accuracy 65.57/0.87	Noise Overall cls (% Precision 71.67/3.30	rate 0.6 and) F ₁ 61.11/0.89	imbalance rat Accuracy 44.39/1.94	io 100x Rare cls (%) Precision 76.67/7.45	<i>F</i> ₁ 51.02/1.56
Methods Vanilla DNN	Accuracy 68.04/1.77 61.20/4.81	Noise Overall cls (%) Precision 70.38/6.31 58.92/5.03	F1 63.68/4.12 54.73/4.60	imbalance ra Accuracy 48.93/4.03 33.64/6.49	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97	$\frac{F_1}{53.39/7.05}$ 39.84/8.42	Accuracy 65.57/0.87 50.85/7.03	Noise Overall cls (%) Precision 71.67/3.30 37.47/4.82	Frate 0.6 and F1 61.11/0.89 41.93/4.07	imbalance rat Accuracy 44.39/1.94 10.37/14.67	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34	$\frac{F_1}{51.02/1.56}$ 15.33/6.87
Methods Vanilla DNN Coteaching+	$\begin{array}{c} & & & \\ & & \\ \hline & & \\ &$	Noise Overall cls (%) Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$	F1 63.68/4.12 54.73/4.60 $p = 0.998$	imbalance ra Accuracy 48.93/4.03 33.64/6.49 p = 0.998	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997	F_1 53.39/7.05 39.84/8.42 $p = 0.997$	Accuracy 65.57/0.87 50.85/7.03 p = 0.997	Noise Overall cls (%) Precision 71.67/3.30 37.47/4.82 $p = 1.000$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$	imbalance rat Accuracy 44.39/1.94 10.37/14.67 p = 0.998	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000	F_1 51.02/1.56 15.33/6.87 $p = 1.000$
Methods Vanilla DNN Coteaching+ MentorMix	$\begin{array}{c} & (\\ Accuracy \\ 68.04/1.77 \\ 61.20/4.81 \\ p = 0.993 \\ 69.11/0.74 \end{array}$	Noise Overall cls (%) Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$	F1 $63.68/4.12$ $54.73/4.60$ $p = 0.998$ $63.28/1.03$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10	$\begin{array}{c} & (\\ Accuracy \\ 65.57/0.87 \\ 50.85/7.03 \\ p = 0.997 \\ 55.28/1.50 \end{array}$	NoiseOverall cls (%)Precision $71.67/3.30$ $37.47/4.82$ $p = 1.000$ $76.45/0.74$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46
Methods Vanilla DNN Coteaching+ MentorMix	$\begin{array}{c} & & & \\ \hline Accuracy \\ \hline 68.04/1.77 \\ \hline 61.20/4.81 \\ p = 0.993 \\ \hline 69.11/0.74 \\ p = 0.129 \end{array}$	Noise Overall cls (%) Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$	F1 $63.68/4.12$ $54.73/4.60$ $p = 0.998$ $63.28/1.03$ $p = 0.826$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$	$\begin{array}{c} & & \\ \hline Accuracy \\ 65.57/0.87 \\ \hline 50.85/7.03 \\ p = 0.997 \\ \hline 55.28/1.50 \\ p = 0.998 \end{array}$	Noise Overall cls (%) Precision 71.67/3.30 37.47/4.82 $p = 1.000$ 76.45/0.74 $p = 0.362$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$	imbalance rat Accuracy 44.39/1.94 10.37/14.67 p = 0.998 19.96/2.34 p = 0.999	io 100xRare cls (%)Precision76.67/7.4516.38/7.34 $p = 1.000$ 77.58/4.01 $p = 0.082$	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$	F1 $63.68/4.12$ $54.73/4.60$ $p = 0.998$ $63.28/1.03$ $p = 0.826$ $64.81/2.92$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$	NoiseOverall cls (%)Precision $71.67/3.30$ $37.47/4.82$ $p = 1.000$ $76.45/0.74$ $p = 0.362$ $72.73/0.67$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$	io 100xRare cls (%)Precision76.67/7.4516.38/7.34 $p = 1.000$ 77.58/4.01 $p = 0.082$ 79.95/0.07	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$	NoiseOverall cls (%)Precision71.67/3.3037.47/4.82 $p = 1.000$ 76.45/0.74 $p = 0.362$ 72.73/0.67 $p = 0.253$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$	imbalance rat Accuracy 44.39/1.94 10.37/14.67 p = 0.998 19.96/2.34 p = 0.999 45.66/2.09 p = 0.182	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap	$\begin{array}{c} & \\ Accuracy \\ 68.04/1.77 \\ 61.20/4.81 \\ p = 0.993 \\ 69.11/0.74 \\ p = 0.129 \\ 68.94/1.40 \\ p = 0.174 \\ 64.97/2.70 \end{array}$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$	F1 $63.68/4.12$ $54.73/4.60$ $p = 0.998$ $63.28/1.03$ $p = 0.826$ $64.81/2.92$ $p = 0.328$ $61.18/4.68$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64	$\begin{array}{c} & \\ Accuracy \\ 65.57/0.87 \\ 50.85/7.03 \\ p = 0.997 \\ 55.28/1.50 \\ p = 0.998 \\ 65.83/1.50 \\ p = 0.316 \\ 55.51/5.83 \end{array}$	NoiseOverall cls (%)Precision $71.67/3.30$ $37.47/4.82$ $p = 1.000$ $76.45/0.74$ $p = 0.362$ $72.73/0.67$ $p = 0.253$ $57.23/6.02$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$ 47.04/5.76	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$	NoiseOverall cls (%)Precision $71.67/3.30$ $37.47/4.82$ $p = 1.000$ $76.45/0.74$ $p = 0.362$ $72.73/0.67$ $p = 0.253$ $57.23/6.02$ $p = 0.993$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$ 47.04/5.76 $p = 0.998$	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$	F1 $63.68/4.12$ $54.73/4.60$ $p = 0.998$ $63.28/1.03$ $p = 0.826$ $64.81/2.92$ $p = 0.328$ $61.18/4.68$ $p = 0.759$ $66.75/2.11$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$	NoiseOverall cls (%)Precision $71.67/3.30$ $37.47/4.82$ $p = 1.000$ $76.45/0.74$ $p = 0.362$ $72.73/0.67$ $p = 0.253$ $57.23/6.02$ $p = 0.993$ $72.04/3.48$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$ 47.04/5.76 $p = 0.998$ 62.01/1.18	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT Noise-adaption	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$ $p = 0.130$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$ $p = 0.021$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$ 66.75/2.11 $p = 0.141$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$ $p = 0.155$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08 p = 0.010	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34 $p = 0.146$	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$ $p = 0.196$	NoiseOverall cls (%)Precision71.67/3.3037.47/4.82 $p = 1.000$ 76.45/0.74 $p = 0.362$ 72.73/0.67 $p = 0.253$ 57.23/6.02 $p = 0.993$ 72.04/3.48 $p = 0.443$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$ 47.04/5.76 $p = 0.998$ 62.01/1.18 $p = 0.120$	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$ $p = 0.380$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18 p = 0.563	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67 $p = 0.101$
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT Noise-adaption	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$ $p = 0.130$ $68.54/2.97$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$ $p = 0.021$ $73.43/2.67$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$ 66.75/2.11 $p = 0.141$ 64.63/2.40	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$ $p = 0.155$ $48.73/6.64$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08 p = 0.010 77.28/3.51	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34 $p = 0.146$ 57.39/3.04	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$ $p = 0.196$ $52.54/5.26$	NoiseOverall cls (%)Precision $71.67/3.30$ $37.47/4.82$ $p = 1.000$ $76.45/0.74$ $p = 0.362$ $72.73/0.67$ $p = 0.253$ $57.23/6.02$ $p = 0.993$ $72.04/3.48$ $p = 0.443$ $56.90/7.90$	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$ 47.04/5.76 $p = 0.998$ 62.01/1.18 $p = 0.120$ 45.92/6.74	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$ $p = 0.380$ $24.53/9.29$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18 p = 0.563 57.12/15.47	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67 $p = 0.101$ 27.23/14.41
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT Noise-adaption LIO	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$ $p = 0.130$ $68.54/2.97$ $p = 0.390$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$ $p = 0.021$ $73.43/2.67$ $p = 0.167$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$ 66.75/2.11 $p = 0.141$ 64.63/2.40 $p = 0.311$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$ $p = 0.155$ $48.73/6.64$ $p = 0.517$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08 p = 0.010 77.28/3.51 p = 0.171	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34 $p = 0.146$ 57.39/3.04 $p = 0.133$	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$ $p = 0.196$ $52.54/5.26$ $p = 1.000$	NoiseOverall cls (%Precision71.67/3.3037.47/4.82 $p = 1.000$ 76.45/0.74 $p = 0.362$ 72.73/0.67 $p = 0.253$ 57.23/6.02 $p = 0.993$ 72.04/3.48 $p = 0.443$ 56.90/7.90 $p = 0.997$	$\begin{array}{c} \textbf{rate 0.6 and} \\ \hline F_1 \\ \hline 61.11/0.89 \\ \hline 41.93/4.07 \\ p = 0.999 \\ \hline 57.55/1.24 \\ p = 0.999 \\ \hline 60.89/1.10 \\ p = 0.669 \\ \hline 47.04/5.76 \\ p = 0.998 \\ \hline 62.01/1.18 \\ p = 0.120 \\ \hline 45.92/6.74 \\ p = 0.998 \end{array}$	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$ $p = 0.380$ $24.53/9.29$ $p = 0.997$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18 p = 0.563 57.12/15.47 p = 0.980	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67 $p = 0.101$ 27.23/14.41 $p = 0.993$
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT Noise-adaption LIO GCE	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$ $p = 0.130$ $68.54/2.97$ $p = 0.390$ $57.38/4.32$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$ $p = 0.021$ $73.43/2.67$ $p = 0.167$ $53.55/6.63$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$ 66.75/2.11 $p = 0.141$ 64.63/2.40 $p = 0.311$ 50.76/6.05	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$ $p = 0.155$ $48.73/6.64$ $p = 0.517$ $29.01/7.37$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08 p = 0.010 77.28/3.51 p = 0.171 45.59/10.18	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34 $p = 0.146$ 57.39/3.04 $p = 0.133$ 32.45/7.67	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$ $p = 0.196$ $52.54/5.26$ $p = 1.000$ $47.15/0.35$	NoiseOverall cls (%Precision71.67/3.3037.47/4.82 $p = 1.000$ 76.45/0.74 $p = 0.362$ 72.73/0.67 $p = 0.253$ 57.23/6.02 $p = 0.993$ 72.04/3.48 $p = 0.443$ 56.90/7.90 $p = 0.997$ 27.53/1.75	F_1 61.11/0.89 41.93/4.07 $p = 0.999$ 57.55/1.24 $p = 0.999$ 60.89/1.10 $p = 0.669$ 47.04/5.76 $p = 0.998$ 62.01/1.18 $p = 0.120$ 45.92/6.74 $p = 0.998$ 33.92/1.02	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$ $p = 0.380$ $24.53/9.29$ $p = 0.997$ $0/0$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18 p = 0.563 57.12/15.47 p = 0.980 0/0	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67 $p = 0.101$ 27.23/14.41 $p = 0.993$ 0/0
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT Noise-adaption LIO GCE	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$ $p = 0.130$ $68.54/2.97$ $p = 0.390$ $57.38/4.32$ $p = 0.996$	NoiseOverall cls (%Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$ $p = 0.021$ $73.43/2.67$ $p = 0.167$ $53.55/6.63$ $p = 0.993$	Fate 0.6 and F_1 63.68/4.12 54.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$ 66.75/2.11 $p = 0.141$ 64.63/2.40 $p = 0.311$ 50.76/6.05 $p = 0.992$	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$ $p = 0.155$ $48.73/6.64$ $p = 0.517$ $29.01/7.37$ $p = 0.997$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08 p = 0.010 77.28/3.51 p = 0.171 45.59/10.18 p = 0.994	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34 $p = 0.146$ 57.39/3.04 $p = 0.133$ 32.45/7.67 $p = 0.995$	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$ $p = 0.196$ $52.54/5.26$ $p = 1.000$	NoiseOverall cls (%Precision71.67/3.30 $37.47/4.82$ $p = 1.000$ 76.45/0.74 $p = 0.362$ 72.73/0.67 $p = 0.253$ 57.23/6.02 $p = 0.993$ 72.04/3.48 $p = 0.443$ 56.90/7.90 $p = 0.997$ 27.53/1.75 $p = 1.000$	Frate 0.6 and F_1 61.11/0.89 41.93/4.07 p = 0.999 57.55/1.24 p = 0.999 60.89/1.10 p = 0.669 47.04/5.76 p = 0.998 62.01/1.18 p = 0.120 45.92/6.74 p = 0.998 33.92/1.02 p = 1.000	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$ $p = 0.380$ $24.53/9.29$ $p = 0.997$ $0/0$ $p = 1.000$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18 p = 0.563 57.12/15.47 p = 0.980 0/0 p = 1.000	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67 $p = 0.101$ 27.23/14.41 $p = 0.993$ 0/0 $p = 1.000$
Methods Vanilla DNN Coteaching+ MentorMix Bootstrap LRT Noise-adaption LIO GCE EL R	Accuracy $68.04/1.77$ $61.20/4.81$ $p = 0.993$ $69.11/0.74$ $p = 0.129$ $68.94/1.40$ $p = 0.174$ $64.97/2.70$ $p = 0.982$ $70.62/3.54$ $p = 0.130$ $68.54/2.97$ $p = 0.390$ $57.38/4.32$ $p = 0.996$ $68.19/1.93$	NoiseOverall cls (%)Precision $70.38/6.31$ $58.92/5.03$ $p = 0.997$ $75.05/1.05$ $p = 0.934$ $71.12/4.69$ $p = 0.431$ $70.83/2.85$ $p = 0.453$ $77.15/2.84$ $p = 0.021$ $73.43/2.67$ $p = 0.167$ $53.55/6.63$ $p = 0.993$ $68.62/5.42$	rate 0.6 and) F_1 63.68/4.1254.73/4.60 $p = 0.998$ 63.28/1.03 $p = 0.826$ 64.81/2.92 $p = 0.328$ 61.18/4.68 $p = 0.759$ 66.75/2.11 $p = 0.141$ 64.63/2.40 $p = 0.311$ 50.76/6.05 $p = 0.992$ 62.58/3.58	imbalance raAccuracy $48.93/4.03$ $33.64/6.49$ $p = 0.998$ $51.40/2.28$ $p = 0.376$ $50.03/5.04$ $p = 0.370$ $48.40/3.06$ $p = 0.643$ $53.65/7.79$ $p = 0.155$ $48.73/6.64$ $p = 0.517$ $29.01/7.37$ $p = 0.997$ $43.55/4.02$	tio 20x Rare cls (%) Precision 73.16/9.31 55.50/9.97 p = 0.997 77.55/3.79 p = 0.151 71.35/8.21 p = 0.602 78.15/1.91 p = 0.168 83.70/4.08 p = 0.010 77.28/3.51 p = 0.171 45.59/10.18 p = 0.994 66.42/9.61	F_1 53.39/7.05 39.84/8.42 $p = 0.997$ 58.11/2.10 $p = 0.124$ 55.56/7.42 $p = 0.346$ 54.61/2.64 $p = 0.380$ 58.07/3.34 $p = 0.146$ 57.39/3.04 $p = 0.133$ 32.45/7.67 $p = 0.995$ 48.51/5.95	Accuracy $65.57/0.87$ $50.85/7.03$ $p = 0.997$ $55.28/1.50$ $p = 0.998$ $65.83/1.50$ $p = 0.316$ $55.51/5.83$ $p = 0.992$ $66.20/1.79$ $p = 0.196$ $52.54/5.26$ $p = 1.000$ $47.15/0.35$ $p = 1.000$ $63.65/0.53$	NoiseOverall cls (%Precision71.67/3.3037.47/4.82 $p = 1.000$ 76.45/0.74 $p = 0.362$ 72.73/0.67 $p = 0.253$ 57.23/6.02 $p = 0.993$ 72.04/3.48 $p = 0.443$ 56.90/7.90 $p = 0.997$ 27.53/1.75 $p = 1.000$ 60.18/5.11	Frate 0.6 and F_1 61.11/0.89 41.93/4.07 p = 0.999 57.55/1.24 p = 0.999 60.89/1.10 p = 0.669 47.04/5.76 p = 0.998 62.01/1.18 p = 0.120 45.92/6.74 p = 0.998 33.92/1.02 p = 1.000 58.69/1.41	imbalance ratAccuracy $44.39/1.94$ $10.37/14.67$ $p = 0.998$ $19.96/2.34$ $p = 0.999$ $45.66/2.09$ $p = 0.182$ $26.78/11.11$ $p = 0.994$ $44.82/2.55$ $p = 0.380$ $24.53/9.29$ $p = 0.997$ $0/0$ $p = 1.000$ $36.13/1.07$	io 100x Rare cls (%) Precision 76.67/7.45 16.38/7.34 p = 1.000 77.58/4.01 p = 0.082 79.95/0.07 p = 0.184 59.15/10.55 p = 0.962 75.80/7.18 p = 0.563 57.12/15.47 p = 0.980 0/0 p = 1.000 50.00/10.00	F_1 51.02/1.56 15.33/6.87 $p = 1.000$ 30.51/3.46 $p = 0.999$ 50.30/1.21 $p = 0.784$ 29.60/10.03 $p = 0.997$ 53.60/2.67 $p = 0.101$ 27.23/14.41 $p = 0.993$ 0/0 $p = 1.000$ 40.00/2.46

Malware != Images

• Highly Skewed and High Noise Rate in Malware dataset require different noise learning approach

- MORSE
- Semi Supervised learning method + Sample re-weighting Mechanism

Semi Supervised Learning: FixMatch

- Tailored for Image Recognition
- Partition labeled and unlabeled datasets
- Weakly augment (flip, shift) unlabéled data
- Predict labels for unlabeled data (pseudo labels)
- Calculate Both supervised, unsupervised loss
- Calculate Final Loss and update model's weights

Algorithm 1: FixMatch – the state-of-the-art semisupervised learning algorithm.

- 1 Input: labeled dataset \mathcal{X} , unlabeled dataset \mathcal{U} , number of total training epochs K, confidence threshold τ , unsupervised loss weight λ .
- 2 Initialization: Initialize the weights Θ for the model $f(\cdot)$ randomly.

3 for
$$k = 0, 1, 2, ..., K$$
 do

4 | for
$$iter = 1, 2, ..., num_batches$$
 do
5 | From \mathcal{X} , draw a mini-batch

From \mathcal{X} , draw a mini-batch $\{(\mathbf{x}_b, y_b) : b \in (1, ..., B)\}$ From \mathcal{U} , draw a mini-batch $\{\mathbf{u}_b : b \in (1, ..., B_\mu)\}$ for $b = 1, 2, ..., B_{\mu}$ do $\mathbf{q}_b = f(g(\mathbf{u}_b); \boldsymbol{\Theta})$ $\widehat{q}_b = \arg \max(\mathbf{q}_b)$ end

```
\mathcal{L}_s = \frac{1}{B} \sum_{b=1}^{B} H(y_b, f(g(\mathbf{x}_b)))
11
                   \mathcal{L}_{u} = \frac{1}{B_{u}} \sum_{b=1}^{B_{\mu}} \mathbf{I}(\max(\mathbf{q}_{b}) > 
12
                      \tau)H(\widehat{q_b}, f(h(\mathbf{u}_b)))
                   \mathcal{L} = \mathcal{L}_s + \lambda \mathcal{L}_u
13
                    Update the model's weights \Theta by
14
                      minimizing the loss function \mathcal{L}
            end
```

```
16 end
```

15

6

7

8

9

10

17 **Output:** the well trained model $f(\cdot; \Theta)$.

MORSE

- FixMatch -> MORSE
- Change design to suit Malware Classification (Augmentation)
- Add Sample Re-weighting

•			13	if $k < T_d$
	Algor	ithm 2: Proposed learning algorithm. The	14	// Use
	custon	nized and extended parts are highlighted.		augme
	1 Inpu	It: imbalanced noisy training dataset D,	15	$\mathcal{L}_s =$
	nur	nber of total training epochs K , labeled data's	16	// Use
	pro	portion d, starting re-weighting epoch T_d ,		augme
	con	fidence threshold τ , unsupervised loss weight	17	$\mathcal{L}_{u} =$
	λ ,]	earning rate α .		$\left \begin{array}{c} -a \\ \tau \end{array} \right H$
	2 Initi	alization: Initialize the weights Θ for the	18	else
	mod	el $f(\cdot)$ by using entire dataset D with only a	19	
	few	epochs.		sample
	3 for /	k = 0, 1, 2,, K do	20	// Use
	4	Partitioning the training dataset D into labeled		augme
		lataset \mathcal{X} and unlabeled dataset \mathcal{U} : select the	21	$\int dt = 0$
		op d % examples with the least loss values	21	\sim_s // Use
		form each given class and treat them as labeled		augme
		ata and the rest as unlabeled data.	22	
	5 1	or $iter = 1, 2,, num_batches do$	23	$\mathcal{L}_{u1} = \mathcal{L}_{u1}$
	0	From λ , draw a mini-batch $\left[\left(\mathbf{r}_{1}, \mathbf{r}_{2} \right) + b \in \left(1, -B \right) \right]$	24	$\mathcal{L}_u = 1$
	-	$\{(\mathbf{x}_b, y_b) : b \in (1,, B)\}$	25	end
	′	$\{\mathbf{n}_{i}: b \in (1 - B)\}$	26	$\mathcal{L} = \mathcal{L}_s + \mathcal{L}_s$
	•	$\begin{bmatrix} u_b & b \in (1,, D_{\mu}) \end{bmatrix}$	27	Update th
	0	U Use Eqn. (3) to perform weak	••	Ontional
	9	augmentation against 11	28	Optional:
	10	$\mathbf{q}_{t} = f(q(\mathbf{u}_{t}); \mathbf{\Theta})$	29	d
	11	$\begin{vmatrix} \mathbf{q}_{0} = f(g(\mathbf{q}_{0}), \mathbf{C}) \\ \widehat{q}_{b} = \arg \max(\mathbf{q}_{b}) \end{vmatrix}$	30 er	iu utnut• the well
	12	end	51 0	uipui. me wen

if $k < T_d$ then
// Use Eqn. (3) to perform weak
augmentation against \mathbf{x}_b
$\mathcal{L}_s = \frac{1}{B} \sum_{b=1}^{B} H(y_b, f(g(\mathbf{x}_b)))$
// Use Eqn. (3) to perform strong
augmentation against \mathbf{u}_b
$\mathcal{L}_u = \frac{1}{B_u} \sum_{b=1}^{B_\mu} \mathbf{I}(\max(\mathbf{q}_b) > $
$ au = au) H(\widehat{q_b}, f(h(\mathbf{u}_b)))$
else
// Calculate the weight of each training
sample using Eqn. (4)
// Use Eqn. (3) to perform weak
augmentation against \mathbf{x}_b
$\mathcal{L}_s = \frac{1}{B} \sum_{b=1}^{B} w_b H(y_b, f(g(\mathbf{x}_b)))$
// Use Eqn. (3) to perform strong
augmentation against \mathbf{u}_b
$\mathcal{L}_{u1} = \frac{1}{B_{\mu}} \sum_{b=1}^{B_{\mu}} \mathbf{I}(\max(\mathbf{q}_b) > \tau)$
$\mathcal{L}_u = \mathcal{L}_{u1} + w_b H(\widehat{q}_b, f(h(\mathbf{u}_b)))$
end
$\mathcal{L} = \mathcal{L}_s + \lambda \mathcal{L}_u$
Update the model's weights Θ by
minimizing the loss function \mathcal{L}
Optional: decay the learning rate α
end
nd d
utput: the well trained model $f(\cdot; \Theta)$.

Selecting a Label

- Assume a pretrained model (At initialization)
- Each Epoch we determine labeled and unlabeled data
 - Calculate loss, top d% samples with least loss -> labeled dataset

Weak & Strong augmentation

- Mask vector $[m_1, ..., m_d]^T \in \mathbb{R}^d$ Bernoulli distribution
- Replace features with from $\bar{\mathbf{x}}$
- Where, $\overline{\mathbf{X}}$ is sampled from the entire dataset

$$\tilde{\mathbf{x}} = \mathbf{x} \odot \mathbf{m} + (1 - \mathbf{m}) \odot \bar{\mathbf{x}}.$$

Sample Re-Weighting

- Handle Class imbalance (weigh the loss differently depending on whether they belong to majority or minority class)
- Samples associated with minor class is assigned higher weight

$$E_{n_{y_b}} = \frac{1 - \beta^{n_{y_b}}}{1 - \beta}.$$
 (4)

 n_{y_b} is the number of samples in class y_b , and $\beta \in [0, 1)$ is a hyperparameter. Using its inverse (*i.e.*, $w_b = \frac{1}{E_{n_{y_b}}}$), we can extend the loss shown in Equation (1) and (2) as

$$\mathcal{L}_{s} = \frac{1}{B} \sum_{b=1}^{B} w_{b} H(y_{b}, f(g(\mathbf{x}_{b})));$$

$$\mathcal{L}_{u} = \frac{1}{B_{\mu}} \sum_{b=1}^{B_{\mu}} \mathbf{I}(\max(\mathbf{q}_{b}) > \tau) w_{b} H(\widehat{q}_{b}, f(h(\mathbf{u}_{b}))).$$
(5)

Synthetic Dataset

TABLE 7: The testing performance of the models learned from MORSE and Vanilla method on the synthetic dataset.

	Noise rate 0.3 and imbalance ratio 20x							Noise rate 0.3 and imbalance ratio 100x				
Methods	Overall cls (%)			Rare cls (%)			Overall cls (%)			Rare cls (%)		
	Accuracy	Precision	F_1	Accuracy	Precision	F_1	Accuracy	Precision	F_1	Accuracy	Precision	F_1
Vanilla DNN	75.55/1.38	82.94/3.78	73.46/0.90	57.89/3.69	85.74/6.65	63.03/1.20	70.83/0.87	76.29/0.85	67.80/1.19	48.45/1.44	79.47/0.62	56.77/0.24
Vanilla DNN	78.87/0.30	82.64/0.88	77.71/0.44	68.59/2.29	80.75/2.44	69.63/1.03	72.85/1.79	75.97/0.98	69.86/1.74	56.81/4.63	76.44/1.89	60.88/2.64
w re-weighting	p = 0.000	p = 0.335	p = 0.000	p = 0.000	p = 0.878	p = 0.000	p = 0.083	p = 0.656	p = 0.049	p = 0.009	p = 0.988	p = 0.008
Our method	79.64/0.83	87.81/1.68	77.61/1.01	64.85/2.62	94.46/2.31	70.00/2.70	71.73/2.24	73.38/4.94	65.87/3.16	46.84/3.98	72.99/9.19	50.54/5.68
w/o re-weighting	p = 0.000	p = 0.011	p = 0.000	p = 0.001	p = 0.009	p = 0.000	p = 0.138	p = 0.900	p = 0.891	p = 0.752	p = 0.917	p = 0.972
Our method	79.73/1.85	87.11/1.82	79.11/1.30	67.47/3.17	88.45/4.63	70.76/3.42	73.47/0.91	78.97/2.11	70.42/1.02	54.40/7.97	82.59/3.85	62.30/5.55
Our method	p = 0.008	p = 0.039	p = 0.000	p = 0.006	p = 0.182	p = 0.002	p = 0.001	p = 0.027	p = 0.007	p = 0.092	p = 0.071	p = 0.040
	Noise rate 0.6 and imbalance ratio 20x						Noise rate 0.6 and imbalance ratio 100x					
Methods	Overall cls (%)			Rare cls (%)			Overall cls (%)			Rare cls (%)		
	Accuracy	Precision	F_1	Accuracy	Precision	F_1	Accuracy	Precision	F_1	Accuracy	Precision	F_1
Vanilla DNN	68.04/1.77	70.38/6.31	63.68/4.12	48.93/4.03	73.16/9.31	53.39/7.05	65.57/0.87	71.67/3.30	61.11/0.89	44.39/1.94	76.67/7.45	51.02/1.56
Vanilla DNN	68.01/1.52	70.65/2.95	65.52/2.68	58.50/2.59	67.70/5.18	57.18/3.31	66.84/2.36	67.22/2.28	64.34/2.33	55.85/4.36	61.15/4.13	56.36/4.29
w re-weighting	p = 0.464	p = 0.448	p = 0.184	p = 0.011	p = 0.960	p = 0.106	p = 0.137	p = 0.979	p = 0.021	p = 0.001	p = 0.996	p = 0.037
Our method	72.82/2.86	77.24/1.69	69.42/2.61	54.09/3.96	81.00/1.34	60.26/2.85	64.85/4.83	65.85/5.03	58.93/2.81	38.65/9.12	66.67/8.43	42.38/6.12
w/o re-weighting	p = 0.012	p = 0.050	p = 0.038	p = 0.051	p = 0.061	p = 0.041	p = 0.624	p = 0.927	p = 0.988	p = 0.895	p = 0.898	p = 0.987
Our method	76.20/0.59	79.45/1.69	72.90/1.17	61.21/1.00	80.45/0.99	64.25/0.20	72.05/1.94	74.97/3.41	68.03/1.01	53.82/4.98	76.60/7.48	58.00/3.80
Our method	p = 0.000	p = 0.016	p = 0.003	p = 0.000	p = 0.066	p = 0.009	p = 0.000	p = 0.005	p = 0.000	p = 0.005	p = 0.891	p = 0.003

PE and Android Dataset

TABLE 8: MORSE vs. Vanilla method on the PE dataset.

Methods		Average (%)		Class-11 (%)			
Methous	Accuracy	Precision	F_1	Accuracy	Precision	F_1	
Vanilla DNN	93.08/0.25	93.65/0.51	92.57/0.36	44.33/3.78	96.34/4.22	60.48/3.22	
Vanilla DNN	93.82/0.29	94.01/0.30	93.50/0.34	55.67/2.98	89.71/2.30	68.61/1.70	
w re-weighting	p = 0.003	p = 0.102	p = 0.001	p = 0.001	p = 0.974	p = 0.001	
Our method	92.50/0.18	93.35/0.28	91.33/0.58	36.50/2.75	99.51/1.10	51.07/5.05	
w/o re-weighting	p = 0.980	p = 0.924	p = 0.992	p = 0.995	p = 0.089	p = 0.979	
Our method	94.15/0.43	94.14/0.57	93.91/0.67	65.33/4.20	90.18/2.08	76.74/1.22	
Our method	p = 0.003	p = 0.061	p = 0.000	p = 0.000	p = 0.984	p = 0.000	

TABLE 9: MORSE vs. Vanilla on the Android dataset.

Methods	Average (%)			Class-6 (%)		
	Accuracy	Precision	F_1	Accuracy	Precision	F_1
Vanilla DNN	73.00/0.35	78.65/2.21	69.96/0.54	2.67/5.53	19.79/34.31	4.63/9.52
Vanilla DNN	77.32/1.72	82.20/3.73	75.68/2.58	20.83/7.99	80.39/9.40	32.03/8.99
w re-weighting	p = 0.002	p = 0.049	p = 0.003	p = 0.007	p = 0.003	p = 0.005
Our method	74.58/0.86	77.33/4.47	71.00/0.96	5.17/7.31	32.35/45.79	8.91/12.60
w/o re-weighting	p = 0.004	p = 0.691	p = 0.015	p = 0.309	p = 0.347	p = 0.311
Our method	79.76/1.02	80.37/1.99	78.72/1.22	27.67/8.01	58.54/18.90	35.80/7.88
	p = 0.000	p = 0.088	p = 0.000	p = 0.000	p = 0.039	p = 0.000