How Machine Learning Is Solving the Binary Function Similarity Problem

USENIX '22

Binary Similarity

- Taking a pair of binaries and producing an output that represents their similarity
- Similar : Originate from the same source code
- Several practical applications (reverse engineering, vulnerability detection, malware clustering)
 - Researchers have published a lot of papers tackling this problem

Problem!

- Field is extremely fragmented
- Unable or difficult to reproduce
 - Incomplete artifacts
- Evaluation results are opaque
 - Different dataset, metric, implementation

Overview

- Binary Similarity Problem
 - Wide Range of Applications
 - Tackled by several research communities
 - Solved?

- Measurement Study on BCSD SOTA models
 - Dataset!

How is similarity measured?

- Direct vs Indirect
- Indirect
 - Compare an abstracted representation of binary instead
- Fuzzy Hash, Code Embedding, Graph Embedding

How is a Function represented?

Raw bytes Assembly Normalized assembly Intermediate Representations

higher abstraction

STRUCTURE

SODE

Control Flow Graph Annotated Control Flow Graph

OTHERS

Data flow analysis Dynamic analysis Symbolic execution and analysis

Selected Models

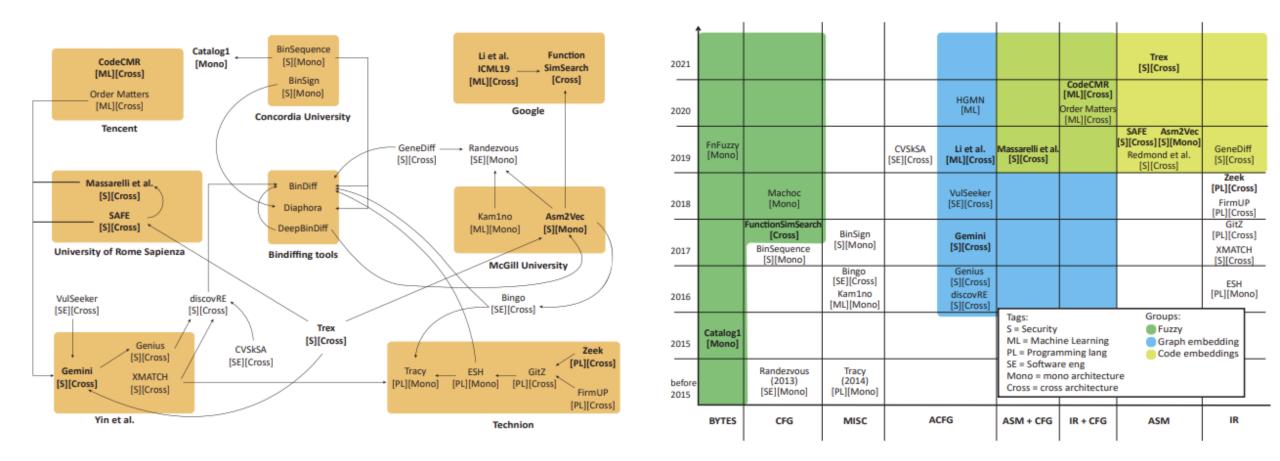


Figure 1: Function Similarity Systematization

Candidate Models (Fuzzy Hash)

- Catalog1
- FunctionSimSearch

Dataset

- Dataset -1
 - ClamAV, Curl, Nmap, OpenSSL, Unrar, Z3, and Zlib
 - Gcc, Clang (major release between 2015~2021)
 - 00, 01, 02, 03, and Os
 - 32/64
 - x86-64, MIPS, and ARM
- Dataset 2 (Trex)
 - Binutils, Coreutils, Diffutils, Findutils, GMP, ImageMagick, Libmicrohttpd, LibTomCrypt, PuTTy, and SQLite
 - Gcc 7.5
 - 00, 01, 02, 03
 - x86, x64, ARM 32, and MIPS 32

Experiment Method

X: diff O: same	Opt	Compiler	Bitness	Arch	Comp-version
XO	Х	Ο	Ο	Ο	Ο
XC	Х	Х	Ο	Ο	Х
XC+XB	Х	Х	Х	Ο	Х
XA	Ο	Ο	Х	Х	Ο
XA+XO	Х	0	Х	Х	Ο
XM	Х	Х	Х	Х	Х

Experiment Method

- Area Under Curve (AUC)
- Mean Reciprocal Rank (MRR)
- Recall@K

Simple Methods (Fuzzy Hash)

			1		0			× /					
						XM					XC+XB		
	Description	XC	XC+XB	XA	XM	small	medium	large	MRR10	Recall@1	MRR10	Recall@1	
Catalog1 Catalog1	B + size 16 B + size 128	0.66 0.73	0.60 0.66	0.48 0.43	0.54 0.55	0.54 0.54	0.53 0.55	0.54 0.58	0.08 0.12	0.07 0.09	0.25 0.31	0.23 0.27	
FSS FSS FSS FSS	G $G + M$ $G + M + I$ $w (G + M + I)$	0.72 0.73 0.73 0.69	0.72 0.71 0.70 0.69	0.69 0.58 0.58 0.65	0.70 0.65 0.65 0.67	0.70 0.64 0.64 0.66	0.71 0.66 0.66 0.68	0.77 0.70 0.71 0.72	0.26 0.17 0.15 0.21	0.20 0.13 0.09 0.16	0.29 0.29 0.28 0.23	0.23 0.24 0.23 0.17	

Table 2: Comparison of Catalog1 and FunctionSimSearch (FSS) on Dataset-1.

More Complex Methods

Table 3: Comparison of machine-learning models on Dataset-1.

								XM		
	Description	XC	XC+XB	XA	XM	small	medium	large	MRR10	Recall@1
[67] Zeek (direct comparison)	Strands	0.84	0.85	0.84	0.84	0.85	0.83	0.87	0.28	0.13
[40] GMN (direct comparison)	CFG + BoW opc 200	0.85	0.86	0.86	0.86	0.89	0.82	0.79	0.53	0.45
[40] GMN (direct comparison)	CFG + No features	0.86	0.87	0.86	0.87	0.88	0.85	0.84	0.43	0.33
[40] GNN	CFG + BoW opc 200	0.86	0.87	0.86	0.87	0.89	0.84	0.76	0.52	0.44
[40] GNN	CFG + No features	0.82	0.83	0.82	0.82	0.85	0.80	0.76	0.37	0.29
[76] GNN (s2v)	CFG + BoW opc 200	0.81	0.82	0.78	0.81	0.82	0.78	0.74	0.36	0.26
[76] GNN (s2v)	CFG + manual	0.81	0.82	0.80	0.81	0.84	0.77	0.79	0.36	0.28
[76] GNN (s2v)	CFG + No features	0.69	0.70	0.69	0.70	0.70	0.69	0.75	0.12	0.07
[45] w2v + AVG + GNN (s2v) [45] w2v + wAVG + GNN (s2v) [45] w2v + RNN + GNN (s2v) [45] w2v + RNN + GNN (s2v)	CFG + N. asm 150	0.79	0.79	0.74	0.77	0.78	0.75	0.73	0.24	0.16
	CFG + N. asm 150	0.79	0.79	0.76	0.77	0.78	0.76	0.76	0.29	0.20
	CFG + N. asm 150	0.79	0.80	0.79	0.80	0.82	0.77	0.80	0.27	0.17
 [49] w2v + SAFE [49] w2v + SAFE [49] w2v + SAFE + trainable [49] rand + SAFE + trainable 	N. asm 150	0.80	0.81	0.80	0.81	0.83	0.77	0.77	0.17	0.07
	N. asm 250	0.82	0.83	0.82	0.83	0.84	0.81	0.82	0.22	0.09
	N. asm 150	0.80	0.81	0.80	0.81	0.83	0.76	0.74	0.29	0.16
	N. asm 150	0.79	0.80	0.79	0.80	0.83	0.75	0.74	0.28	0.17
[14] Asm2Vec	10 CFG random walks	0.77	0.69	0.60	0.65	0.63	0.70	0.78	0.12	0.07
[38] PV-DM	10 CFG random walks	0.77	0.70	0.50	0.62	0.63	0.62	0.61	0.11	0.08
[38] PV-DBOW	10 CFG random walks	0.78	0.70	0.50	0.63	0.63	0.62	0.61	0.11	0.09

			AUC		MRR10			Recall@1			Testing time (s)		
Model name	Description	XO	XA	XA+XO	хо	XA	XA+XO	XO	XA	XA+XO	Feat	Inf	Tot 100
[67] Zeek (direct comparison)	Strands	0.92	0.94	0.91	0.42	0.45	0.36	0.28	0.31	0.21	7225.41	67.00	9.92
[40] GMN (direct comparison)	CFG + BoW opc 200	0.97	0.98	0.96	0.75 0.61	0.84	0.71	0.66	0.77	0.61	1093.68	1005.00	1.83
[40] GMN (direct comparison)	CFG + No features	0.93	0.97	0.95		0.76	0.67	0.51	0.68	0.59	978.15	876.00	1.63
[40] GNN	CFG + BoW opc 200	0.95	0.97	0.95	0.67	0.79	0.67	0.57	0.73	0.57	1093.68	116.52	1.66
[40] GNN	CFG + No features	0.91	0.96	0.93	0.54	0.71	0.59	0.44	0.62	0.49	978.15	100.34	1.48
[76] GNN (s2v)	CFG + BoW opc 200	0.94	0.95	0.93	0.58	0.57	0.58	0.48	0.42	0.47	1093.68	118.59	1.66
[76] GNN (s2v)	CFG + Gemini	0.93	0.96	0.93	0.57	0.74	0.57	0.47	0.64	0.49	5139.91	98.40	7.18
[76] GNN (s2v)	CFG + No features	0.75	0.79	0.77	0.18	0.20	0.23	0.12	0.13	0.16	978.15	40.87	1.40
[45] w2v + AVG + GNN (s2v)	CFG + N. asm 150	0.90	0.88	0.87	0.46	0.31	0.42	0.38	0.18	0.33	1070.01	253.72	1.82
[45] w2v + wAVG + GNN (s2v)	CFG + N. asm 150	0.87	0.87	0.85	0.37	0.29	0.36	0.29	0.17	0.27	1070.01		1.81
[45] w2v + RNN + GNN (s2v)	CFG + N. asm 150	0.88	0.90	0.88	0.32	0.35	0.35	0.19	0.18	0.23	1070.01		2.41
 [49] w2v + SAFE [49] w2v + SAFE [49] w2v + SAFE + trainable [49] rand + SAFE + trainable 	N. asm 150 N. asm 250 N. asm 150 N. asm 150	0.88 0.86 0.91 0.90	0.90 0.88 0.93 0.91	0.88 0.87 0.91 0.90	0.27 0.28 0.40 0.28	0.30 0.32 0.43 0.33	0.31 0.28 0.37 0.31	0.14 0.16 0.26 0.14	0.18 0.19 0.25 0.17	0.20 0.19 0.23 0.21	1031.23 1031.23 1031.23 1031.23	33.33 33.57	1.46 1.46 1.46 1.46
[14] Asm2Vec	Rand walks asm	0.94	0.69	0.75	0.60	0.07	0.22	0.49	0.02	0.18	978.15	5235.00	8.51
[38] PV-DM	Rand walks asm	0.94	0.66	0.72	0.64	0.08	0.23	0.51	0.05	0.19	978.15	5239.00	8.52
[38] PV-DBOW	Rand walks asm	0.94	0.66	0.72	0.63	0.07	0.23	0.50	0.03	0.20	978.15	3004.00	5.46
[60] Trex	512 Tokens	0.94	0.94	0.94	0.61	0.50	0.53	0.50	0.38	0.46	1493.58	1365.89	3.92
[74] Catalog_1	size 16	0.72	0.50	0.55	0.43	0.06	0.14	0.38	0.06	0.14	654.70	0.00	0.90
[74] Catalog_1	size 128	0.86	0.48	0.57	0.50	0.07	0.17	0.42	0.06	0.14	823.47	0.00	1.13
[18] FSS [18] FSS [18] FSS [18] FSS	$G \\ G + M \\ G + M + I \\ w(G + M + I)$	0.77 0.79 0.80 0.83	0.81 0.68 0.68 0.80	0.77 0.69 0.69 0.78	0.26 0.29 0.30 0.43	0.35 0.15 0.16 0.30	0.32 0.21 0.20 0.36	0.18 0.23 0.23 0.36	0.26 0.09 0.10 0.23	0.26 0.15 0.14 0.29	1903.46 1903.46 1903.46 1903.46	466.07 466.07 466.07 466.07	3.25 3.25 3.25 3.25 3.25

Table 4: Comparison of fuzzy hashing and machine-learning models on Dataset-2

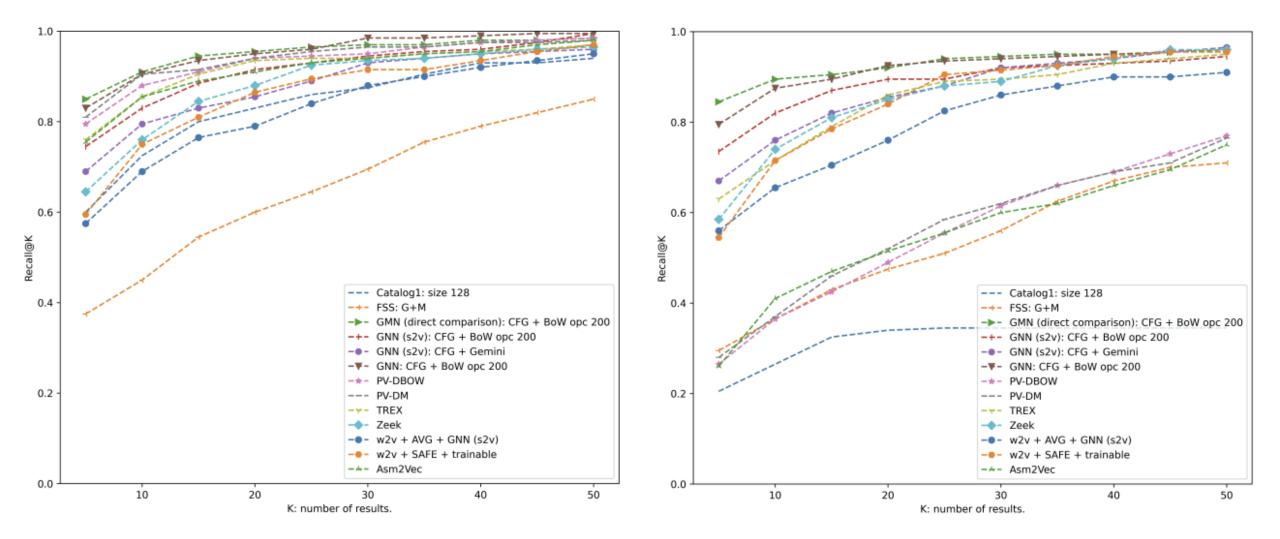


Figure 2: Comparison of the recall at different K values for XO (left) and XM (right) tasks.

CodeCMR (Tencent)

- Didn't Reimplement
- Authors of CodeCMR assisted in evaluation

						XM					
	Description	XC	XC+XB	XA	XM	small	medium	large	MRR10	Recall@1	
[40] GNN [40] GNN	CFG + BoW opc 200 CFG + BoW IR 80	0.86 0.87	0.87 0.87	0.87 0.87	0.87 0.88	0.90 0.89	0.84 0.86	0.78 0.81	0.58 0.62	0.52 0.56	
[79] CodeCMR/BinaryAI	CFG + IR + Int + Strings	0.98	0.98	0.98	0.98	0.99	0.97	0.93	0.86	0.83	

Table 5: Comparison of CodeCMR/BinaryAI with GNN and bag of words (BoW) of opcodes (opc) or IDA microcode (IR).

Takeaways – Contribution of novel ML solutions

- Deep-learning models provide an effective way of learning a function representation
- Siamese architecture in combination with a margin based loss introduced significant improvements
- GNNs are effective encoders and can be used in combination with others

Takeaways – Role of different set of features

- Using basic block features (e.g. ACFG) provides better results
- Minimal difference between manually engineered features and simpler ones (e.g. BoW opcodes)
- Dataflow information can boost the results especially for large functions

Takeaways – Cross Architecture vs Single Architecture

- Most ML models perform similarly on all the evaluated tasks
- Training on generic task data achieves performance close to the best of each task
- Asm2Vec and Catalog1 are limited to comparisons to a single architecture

Takeaways – Future Directions

- GNN models provide best results, but there are tens of different variants that need to be tested
- Combining GNNs with intermediate representations and dataflow information must be studied
- Training strategy and loss functions have been barely discussed in the past and only recently explored