InCoder: A Generative Model For Code Infilling and Synthesis

ICLR 2023

Overview

- Generative Model using bidirectional context
- Left-to-Right Generation-> Left-to-Right + Editing(Infilling, Mask)
- InCoder:
 - Type Inference
 - Docstring Generation
 - Variable Renaming
 - Complete Missing Line of Code

Causal Masking

- Code Generation either utilizes:
 - left-to-right (causal) autoregressive language modeling objective
 - Masked language modeling objective (BERT)
- Causal models
 - Only condition on context to the left
 - Can autoregressively generate entire documents
- Masked Language Models
 - Can condition both the left and right context to infill a masked region
 - Training objective is limited to generating only 15% of a document

Training

Training

Original Document

Masked Document

A "span k" is replaced with <Mask:k>

Training

- # of Spans = Poisson Distribution with a mean of one
 - (50% cases are single spans but count can go up to 256spans)
- Maximize: log P([Left; < Mask: 0 > ,Right; < Mask: 0 > ;Span; < EOM >])

Inference

- P('|[Left; < Mask: 0 > ; Right; < Mask: 0 >])
- Generation is continued at the end
 - Until <EOM> is generated or a stopping criterion is reached

Model: InCoder-6.7B

- Based on 6.7B Transformer language model (Vaswani et al. 2017)
- Focus is Python but includes 28 languages

Experiments

- Model can test for three methods
- Causal Masking Inference Procedure
 - P(•|[Left;<Mask:0>;Right;<Mask:0>])
- Left-to-right single
 - P(•|Left)
- Left-to-right reranking
 - P(·|Left) to generate K (10) possible entries (Span1~SpanK)
 - Calculate log P(Left;SpanK;Right) or another method (Chen et al.)
 - Determine candidate

Infilling Lines of Code (HumanEval)

- HumanEval dataset (Chen et al. 2021a)
- Single Line Infilling
 - Metric: Pass rate
 - The rate at which the completed function passes all of the function's input-output pairs
 - Metric: Exact Match
 - Percentage of times that the completed lines exactly match the masked lines
- Multi Line Infilling
 - More than one line
 - N x (N + 1) / 2 examples for a function with N non-blank lines

Infilling Lines of Code (HumanEval)

Method	Pass Rate	Exact Match	Method	Pass Rate	Exact Match
L-R single L-R reranking CM infilling	48.2 54.9 69.0	38.7 44.1 56.3	L-R single L-R reranking CM infilling	24.9 28.2 38.6	15.8 17.6 20.6
PLBART code-cushman-001 code-davinci-001	41.6 53.1 63.0	42.0 56.0	PLBART code-cushman-001 code-davinci-001	13.1 30.8 37.8	 17.4 19.8

(a) Single-line infilling.

(b) Multi-line infilling.

Table 1: On our single- and multi-line code infilling benchmarks that we construct from HumanEval, our causal-masked (CM) approach obtains substantial improvements over left-to-right single candidate and left-to-right reranking baselines in both function test pass rate and exact match.

Infilling Lines of Code (HumanEval)

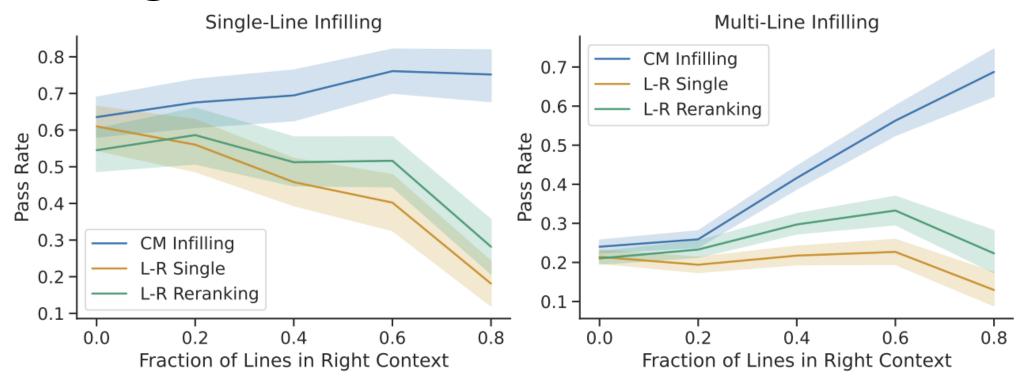


Figure 2: Infilling pass rate by the fraction of the function's lines which are provided to the right of the region that must be infilled, for single-line infilling (left) and multi-line infilling (right). Shaded regions give 95% confidence intervals, estimated using bootstrap resampling. Our causal-masked (CM) infilling method, blue, consistently outperforms both of the left-to-right (L-R) baselines, with larger gains as more right-sided context becomes available (the right side of both graphs).

Infilling Example

Original Document

Multi-Region Infilling

```
from collections import Counter

def word_count(file_name):
    """Count the number of occurrences of each word in the file."""
    words = []
    with open(file_name) as file:
        for line in file:
            words.append(line.strip())
    return Counter(words)
```

Docstring Generation (CodeXGLUE)

- CodeXGLUE code to text docstring generation task (Lu et al. 2021)
- 4-gram BLEU scores

Method	BLEU
Ours: L-R single	16.05
Ours: L-R reranking	17.14
Ours: Causal-masked infilling	18.27
RoBERTa (Finetuned)	18.14
CodeBERT (Finetuned)	19.06
PLBART (Finetuned)	19.30
CodeT5 (Finetuned)	20.36

Table 2: CodeXGLUE Python Docstring generation BLEU scores. Our model is evaluated in a zero-shot setting, with no fine-tuning for docstring generation, but it approaches the performance of pretrained code models that are fine-tuned on the task's 250K examples (bottom block).

Docstring Generation

Original Document

Docstring Generation

Return Type Prediction

Method	Accuracy	Method	Precision	Recall	F1
Left-to-right single Left-to-right reranking Causal-masked infilling	12.0 12.4 58.1	Ours: Left-to-right single Ours: Left-to-right reranking Ours: Causal-masked infilling	30.8 33.3 59.2	30.8 33.3 59.2	30.8 33.3 59.2
(a) Results on the test set of the		TypeWriter (Supervised)	54.9	43.2	48.3

(a) Results on the test set of the benchmark that we construct from CodeXGLUE.

(b) Results on a subset of the TypeWriter's OSS dataset (Pradel et al., 2020). We include examples from which we were able to obtain source files, successfully extract functions and types, that have non-None return type hints, and that were not included in our model's training data.

Table 3: Results for predicting Python function return type hints on two datasets. We see substantial improvements from causal masked infilling over baseline methods using left-to-right inference.

Return Type Prediction

Original Document

Type Inference

```
def count_words(filename: str) -> Dict[str, int]:
    """Count the number of occurrences of each word in the file."""
    with open(filename, 'r') as f:
        word_counts = {}
        for line in f:
            for word in line.split():
                if word in word_counts:
                      word_counts[word] += 1
                      else:
                      word_counts[word] = 1
                      return word_counts
```

Variable Renaming

Method	Accuracy
Left-to-right single	18.4
Left-to-right reranking	23.5
Causal-masked infilling	30.6

Table 4: Results on the variable renaming benchmark that we construct from CodeXGLUE. Our model benefits from using the right-sided context in selecting (L-R reranking and CM infilling) and proposing (CM infilling) variable names.

Original Document

Variable Name Prediction