
Ahoy SAILR! There is No Need to DREAM of C:
A Compiler-Aware Structuring Algorithm for

Binary Decompilation
Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O'Kain, Derron Miao, Tiffany Bao, Adam

Doupé, Yan Shoshitaishvili, and Ruoyu Wang, Arizona State University

USENIX ‘24

GOTO instruction

Good Binary Decompilation = No GOTO?
How should we interpret GOTO statements in decompiled code?

What is wrong with goto?

• Structuring failures manifest as goto statements in the
decompilation

• However, in Linux kernel (6.1): 3,754 gotos exist
• Having no goto = better decompilation?

Success of a decompiler = Eliminate all gotos?

Which Decompilation is better?

Good Decompilation?

• There are developer intended gotos

• Decompilation should aim to be as close to original source code

• Decompilation should preserve intended gotos and eliminate
unintended (spurious) gotos

Q1. What causes spurious gotos?

Q2. How can we preserve the intended structure?

Q3. How good is the new structuring algorithm
compared to previous work?

A1. Cause of Spurious GOTOs

Searching for Spurious GOTO

• Manual Search -> (Does not Scale!)

• 1. Compile binary using GCC (O2, save-temps, dump-tree-all)
• Saves intermediate files

• 2. Decompile all functions -> identify functions /w GOTO but /wo
GOTO in source

Unstructurable Subgraph
• Structuring Algorithms attempt to match the subgraph of a CFG

against known control-flow patterns for C control-flow structures

• Unstructurable subgraph = does not match a known C control-
flow pattern.

• Compiler optimizations create novel graph schemas

Optimizations that Cause Spurious GOTO?
(Coreutils 9.1, GCC O2 -> O0)

A. Jump Threading

• Transforms a conditional branch into an unconditional branch for
certain paths

B. Common Subexpression Elimination

• When a common statement is shared among multiple blocks
• Reduce to one expression and jump to that expression

D. Cross Jumping

• Unifies duplicate code and replace duplicates with a jump to
unified statement

Others

• Switch Conversion (C)
• Software Thread Cache Reordering (E)
• Loop Header Optimization (F)
• Builtin Inlining (G)
• Switch Lowering (H)
• Nonreturning Functions (I)

Classification

• Irreducible Statement Duplications (ISD)
(Single -> Many)

• A, E, F

• Irreducible Statement Condensing (ISC)
(Many->Single)

• B, C, D

• Miscellaneous
• G, H, I

A2. SAILR: A Compiler-Aware
Structuring Algorithm

Angr Decompiler

• Binary -> VEX IR CFG -> AIL CFG (Angr Intermediate Language
CFG)

• SAILR:
• AIL CFG (IN), C Pseudocode (OUT)

• Region Identification
• Schema Matching
• Region Simplifications
• Deoptimization (*)

• How? “Compiler-Aware”

ISD Optimizations

Deoptimizing ISD

ISC Optimization

Deoptimizing ISC

A3. Evaluation

Measuring the Quality of Structuring

• Number of gotos (GOtos) (prev)
• McCabe Cyclomatic Code Complexity (MCC) (prev)
• Line of Code (LoC) (prev)
• Graph Edit Distance (GED) (new)
• Control-Flow Graph Edit Distance (CFGED) (new)

Measuring the Quality of Structuring

GED and CFGED

• GED
• Edge-node location difference metric between source CFG and

decompiled code CFG

• CFGED
• GED is usually too expensive to compute on a graph with >12 nodes
• Identify Single-entry Single-exit (SESE) regions and compute GED for each

region (CFGED = sum of GED of all SESE regions)
• Approximate of exact GED

Evaluation

Why is CFGED so large?

• CFGED is still an approximation
• For large CFGs, CFGED differ significantly from GED

• When exact GED is 4, CFGED reported 306

Takeaway

• Identifies the root cause of spurious gotos in disassembly
(compiler optimizations)

• Proposes a decompilation evaluation metric

• Highlights the importance of binary provenance information for
decompilation

	Ahoy SAILR! There is No Need to DREAM of C: A Compiler-Aware Structuring Algorithm for Binary Decompilation
	GOTO instruction
	Good Binary Decompilation = No GOTO?
	What is wrong with goto?
	Success of a decompiler = Eliminate all gotos?
	Which Decompilation is better?
	Good Decompilation?
	Q1. What causes spurious gotos?��Q2. How can we preserve the intended structure?��Q3. How good is the new structuring algorithm compared to previous work?
	A1. Cause of Spurious GOTOs
	Searching for Spurious GOTO
	Unstructurable Subgraph
	Optimizations that Cause Spurious GOTO? (Coreutils 9.1, GCC O2 -> O0)
	A. Jump Threading
	B. Common Subexpression Elimination
	D. Cross Jumping
	Others
	Classification
	A2. SAILR: A Compiler-Aware Structuring Algorithm
	슬라이드 번호 19
	Angr Decompiler
	ISD Optimizations
	Deoptimizing ISD
	ISC Optimization
	Deoptimizing ISC
	A3. Evaluation
	Measuring the Quality of Structuring
	슬라이드 번호 27
	Measuring the Quality of Structuring
	GED and CFGED
	Evaluation
	Why is CFGED so large?
	Takeaway

