Ahoy SAILR! There is No Need to DREAM of C:
A Compiler-Aware Structuring Algorithm for
Binary Decompilation

Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O'Kain, Derron Miao, Tiffany Bao, Adam
Doupé, Yan Shoshitaishvili, and Ruoyu Wang, Arizona State University

USENIX 24

GOTO instruction

1 COULD RESTRUCTURE
THE PROGRAMS FLOW

OR UUSE ONE LITILE
GGTD:,L INSTEAD.

Q%

EH, SCREW GOOD PRACTICE.
HOW BAD CAN IT BE?

\ goto main-sub3;

)Jd

: : i? *COMPILE=

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful dynamic progress is only ¢

o . : - call of the procedure we
Eey Words and Phrases: go to statement, jump instruction, e 2t 24 Eh&fﬂ.ﬂteﬁze the O
branch instruction, conditional clause, alternative clause, repet- .

itive clause, program intelligibility, program sequencing -textual indices, the lengt
; ' ' : - .
*R Categories: 4.22, 5.23. 5.4 ' d}reallnu_ depth-of FTMM"

Good Binary Decompilation = No GOTO?

How should we interpret GOTO statements in decompiled code?

What is wrong with goto?

* Structuring failures manifest as goto statements in the
decompilation

* However, in Linux kernel (6.1): 3,754 gotos exist
* Having no goto = better decompilation?

Success of a decompiler = Eliminate all gotos?

1 int schedule_job(int needs_next, int fast_job, int mode)
2 {

3 if (needs_next && fast_job) {

4 complete_job();

5 if (mode EARLY_EXIT)

6 goto cleanup;

7
8
9

next_7job();
}

10
11 refresh_jobs();
12 if (fast_job)
13 fast_unlock () ;
14
15 cleanup:
16 complete_7job();
17 log_workers () ;
18 return job_status(fast_job);
19 }

Listing 1: A motivating example based on code from the
Linux kernel job scheduler.

Which Decompilation is better?

1 long long schedule_job(unsigned int a0, 1 long long schedule_job(unsigned int a0,
— unsigned int al, unsigned int a2) — unsigned int al, unsigned int a2)

1 long long schedule_job(unsigned int a0,
— unsigned int al, unsigned int a2)

2 { 2 | 2 {
3 if (a0 && al) 3 if (a0 && al) 3 if (al &«& al)
4 { - { 4 {
5 complete_job(); 5 complete_job(); 5 complete_job();
6 if (EARLY EXIT != a2) 6 if (EARLY EXIT == aZ) 6 if (EARLY EXIT == aZ)
7 { 7 goto LABEL_401Z2eb; 7 goto LABEL_4012eb;
8 next_job(); 8 next_job(); 8 next_job();
9 refresh_jobs(); 9 refresh_jobs(); 9 }
10] 10 goto LABEL_4012d3; 10 refresh_jobs();
11 } 11 } 11
12 12 refresh_jobs(); 12
13 if (a0 || 'al) 13 if (l'al) 13 if (al)
14 refresh_jobs(); 14 goto LABEL_401Zeb; 14 fast_unlock();
15 if (al && ('al EARLY EXIT !'= a2Z)) 15 LABEL _4012d3: 15
16 fast_unlock(); 16 fast_unlock(); 16
17 17 LABEL _4012eb: 17 LABEL_4012eb:
18 complete_job(); 18 complete_Jjob(); 18 complete_job () ;
19 log_workers|(); 19 log_workers(); 19 log_workers () ;
20 return job_status(al); 20 return job_status(al); 20 return job_status(al);
21 } 21 } 21 }

Figure 1: (From left to right) the DREAM, Phoenix, and SAILR decompilation of Listing 1 (using GCC 9.5 -02).

Good Decompilation?

* There are developer intended gotos
* Decompilation should aim to be as close to original source code

* Decompilation should preserve intended gotos and eliminate
unintended (spurious) gotos

Q1. What causes spurious gotos?
Q2. How can we preserve the intended structure?

Q3. How good is the new structuring algorithm
compared to previous work?

A1. Cause of Spurious GOTOs

Searching for Spurious GOTO

* Manual Search -> (Does not Scale!)

* 1. Compile binary using GCC (02, save-temps, dump-tree-all)
e Saves intermediate files

* 2. Decompile all functions -> identify functions /w GOTO but /wo
GOTO in source

Unstructurable Subgraph

e Structuring Algorithms attempt to match the subgraph of a CFG
against known control-flow patterns for C control-flow structures

* Unstructurable subgraph = does not match a known C control-
flow pattern.
* Compiler optimizations create novel graph schemas

CONTROL FLOW SUBGRAPHS

If then Do Repeat
else while until

! ! !

Q ® P

| !

Optimizations that Cause Spurious GOTO?
(Coreutils 9.1, GCC 02 -> O0)

3,000 -0 . 02
s
QL
7o)
2,121 5

W
2 2,000 1790 1765 =
o N
O - i 01 ‘Z
2
1,046

1,000 ' O

. B T T [

02 A B C D E F G
Disabled Optimizations

Figure 2: Gotos present in Hex-Rays decompilation as opti-
mizations in Section 3.3 are disabled. Each optimization point
disables itself and all optimizations to its left. Optimization
sets 02 through 00 are shown for reference.

A. Jump Threading

* Transforms a conditional branch into an unconditional branch for
certain paths

¥ = false ¥ = false

— — 5

foo() Jump > foo foo
if (O Threading if Ei} jumg}

1
=n 59 0=

B. Common Subexpression Elimination

* When a common statement is shared among multiple blocks
* Reduce to one expression and jump to that expression

N VA
AN /\, i/’{f\—*/t
/\ /\ /\)\
JAAN AN '
/\

D. Cross Jumping

* Unifies duplicate code and replace duplicates with a jump to
unified statement

WHAT IS CRC

CROSS JUl 3 IS A COMPILER OPTIMIZATION TECHNIQUE THAT DETECTS CODE IN
BRANCHES THA.T CAN BE SHARED AND REWRITES THE PROGRAM FLOW TO USE ONLY A
SINGLE INSTANCE OF THE CODE.

x) {

X = 1;+——__ [ASSIGNMENTIS | call Compute()
| DEDUPLICATED | | short LBe15

Lee1e: call ComputeElse()

SINGLE
| ASSIGNMENT

Others

* Switch Conversion (C)

* Software Thread Cache Reordering (E)
* Loop Header Optimization (F)

* Builtin Inlining (G)

* Switch Lowering (H)

* Nonreturning Functions (l)

Classification

* [rreducible Statement Duplications (ISD)

(Single -> Many)
* A,E, F

* Irreducible Statement Condensing (ISC)
(Many->Single)

*B,C,D
* Miscellaneous

e G,H, I

A2. SAILR: A Compiler-Aware
Structuring Algorithm

SAILR Structuring

Lifting .:

| Region Schema Region :
Simplification Identificati Matchi Simplificati !
| dentification atching implification :
Variable l

Recovery

Y

Fixed-point ,
‘ k - I

CFG Updated
Deoptimizations CFG
C Psuedocode Emission
int foo(int a) {
return a ¢ a : -1;

}

Figure 3: Overview of ANGR DECOMPILER’s decompilation
pipeline.

Angr Decompiler

* Binary -> VEX IR CFG -> AIL CFG (Angr Intermediate Language
CFG)

* SAILR:
* AIL CFG (IN), C Pseudocode (OUT)

Region Identification
Schema Matching
Region Simplifications
Deoptimization (*)

* How? “Compiler-Aware”

ISD Optimizations

void foo(int a, int b)
if (a && b) |
puts ("first print");
}

puts("second print");

if (b) {
puts ("third print");
}
sleep(l);
puts("leaving foo...");

{

void foo(int a, int b) {
if (a && b) |
puts("first print");
puts ("second print");
goto label 1;
}
puts ("second print");
if (b) {
label 1:
puts("third print");
}
sleep(l);
puts("leaving foo...");

}

Figure 4: Example C code shown before and after transtforma-
tion from Jump Threading, an ISD optimization. The second
condition of the original code 1s always true if the first con-
dition 1s true, causing the comparison to be subverted by a

jump.

Deoptimizing ISD

R R
1R
WP]

Figure 5: CFGs before and after deoptimizing an ISD opti-
mization case. In order to identify an ISD case, the shaded
node must be found to have a semantic duplicate, as well as
post-dominating goto edge. The nodes are merged and then
bounded by their previous conditions.

ISC Optimization

int feoo(int a, int b) |
if(!a)
return -1;
puts("first print");
if(!b) {
return -1;

}

puts("leaving foo...");

return 1;

int fcoo(int a, int b) {

if('a)
goto label_]1;
puts("first print");
if('b) {
label 1:
ret = -1;

goto label 2;
}

puts ("leaving foo...");
ret = 1;
label 2:

return ret;

}

Figure 7: Example C code shown betore and after transfor-
mation from Cross Jumping, an ISC optimization. In the
original code, the return statement, as well as its return value,
are reused in the same execution pass resulting in statements
being merged and connected with a goto.

Deoptimizing ISC

o) o)

\ ’ Y 'x
3.Q.0 @@

Y

)

Figure 6: CFGs before and after deoptimizing an ISC opti-
mization case. ISC cases contain a goto edge connecting one
node to another node that has multiple predecessors. Duplica-
tion of the shaded node, and all its single-successor ancestors,
revert this case.

A3. Evaluation

Measuring the Quality of Structuring

* Number of gotos (GOtos) (prev)

* McCabe Cyclomatic Code Complexity (MCC) (prev)
* Line of Code (LoC) (prev)

* Graph Edit Distance (GED) (new)

* Control-Flow Graph Edit Distance (CFGED) (new)

1 long long schedule_job(unsigned int a0, 1 long long schedule_job(unsigned int a0,
— unsigned int al, unsigned int a2)

if (a0 && al)
{
complete_job();
if (EARLY EXIT != a2)
{
next_job();
refresh_jobs();

if (a0 || 'al)
refresh_jobs();

if (al &«& (!al EARLY EXIT != az))
fast_unlock();

complete_job();
log_workers();
return job_status(al);

— unsigned int al, unsigned int a2)

{

L= I = TR . B —Sa A o

—_— =
—_
—_—

if (a0 && al)

{
complete_job();
if (EARLY EXIT == aZ2)

goto LABEL_4012eb;

next_job();
refresh_jobs();
goto LABEL_4012d3;

}

refresh_jobs();

if (l'al)
goto LABEL_401Zeb;

15 LABEL_4012d3:

16

fast_unlock();

17 LABEL _4012eb:

18
19

complete_Jjob();
log_workers();
return job_status(al);

1 long long schedule_job(unsigned int a0,
— unsigned int al, unsigned int a2)

2 {

3 if (a0 && al)

4 {

5 complete_job();

6 if (EARLY EXIT == aZ)
7 goto LABEL_401Zeb;
8 next_job();

9 }

10 refresh_jobs();

11

12

13 if (al)

14 fast_unlock();

17 LABEL_4012eb:

18 complete_job () ;
19 log_workers();
20 return job_status(al);

21 }

Figure 1: (From left to right) the DREAM, Phoenix, and SAILR decompilation of Listing 1 (using GCC 9.5 -02).

Measuring the Quality of Structuring

Table 2: Previous work’s structuring metrics, GED, and
CFGED measured on Figure 1 and Listing 1.

Gotos LoC MCC GED CFGED

Source 1 19 4 0 0
SAILR | 15 4 0 0
Phoenix 3 19 4 2 2
DREAM 0 16 9 21 38

GED and CFGED

* GED

* Edge-node location difference metric between source CFG and
decompiled code CFG

* CFGED

 GED is usually too expensive to compute on a graph with >12 nodes

* |dentify Single-entry Single-exit (SESE) regions and compute GED for each
region (CFGED = sum of GED of all SESE regions)

* Approximate of exact GED

Evaluation

Table 3: Structuring results on 7,355 functions across 26 popular Debian packages. The percent change relative to source is
shown on each sum. The CFGED percent change is shown w.r.t. Hex-Rays.

Metric Source N SAILE Hex-Bays Ghidra Phoenix N DEEAM rev.ng

Sum Ave Med Sum Avg Med Sum Ave Med Sum Ave Aled Sum Ave Med Sum Aveg Med Sum Avg DMed
Ciotos L3gdl 19 [2073 (95.5%) {L36 L & 115 (347.3%) (1LE3 o 6575 (3809%) (.89 00 39T (521.6%) 1.16 L] L (DO 0 0 O TR) 0 i
Bools 6 180 (LE4 [3980 135.6%) {154 o 4279 (30.8%) (.54 LR 4. 850021.5%) (66 R 2 AR5 (56.6%) .37 [43 661 16L0.5%) 5.44 0 2003 (67 .6%) .27 (i
Calls 53uas T34 in 52558 (2.6%) 715 30 52508 (2E%) T.14 RN 5320241.5%) 723 ER] 51,167 {5.2%) f. 6 ER 1] 51,204 (5.2%) B0 300 166,798 (116.3%) 2268 in
CFGED]] 0 l&6468 (5% 2264 L1 165583 (%) 2252 a0 187N (13.2%) 235 T ThG 480 (5%) 1264 BV AEEZA] (104 A% 45494 LD 524 248 (216.6%) T1.29 i

Table 4: Structuring results on 433 functions across Coreutils
compiled with various GCC versions and Clang.

Most-Recent Release Decompiler Golos Bools Calls CFGED

Source N/A ~ ~ 2_{] -ﬂ! 4,?& 1 ﬂ
aces owseromy R T mow
Gy _wwmam NE 1@ ar e
Gcn mam E v moom T

SAILE 167 292 4290 22879

“Neyrs gy A~ .l
(laog 14 March 2, 2022 Hex-Rays 454 303 4335 22671

Why is CFGED so large?

* CFGED is still an approximation

* For large CFGs, CFGED differ significantly from GED
* When exact GED is 4, CFGED reported 306

Takeaway

* |dentifies the root cause of spurious gotos in disassembly
(compiler optimizations)

* Proposes a decompilation evaluation metric

* Highlights the importance of binary provenance information for
decompilation

	Ahoy SAILR! There is No Need to DREAM of C: A Compiler-Aware Structuring Algorithm for Binary Decompilation
	GOTO instruction
	Good Binary Decompilation = No GOTO?
	What is wrong with goto?
	Success of a decompiler = Eliminate all gotos?
	Which Decompilation is better?
	Good Decompilation?
	Q1. What causes spurious gotos?��Q2. How can we preserve the intended structure?��Q3. How good is the new structuring algorithm compared to previous work?
	A1. Cause of Spurious GOTOs
	Searching for Spurious GOTO
	Unstructurable Subgraph
	Optimizations that Cause Spurious GOTO? (Coreutils 9.1, GCC O2 -> O0)
	A. Jump Threading
	B. Common Subexpression Elimination
	D. Cross Jumping
	Others
	Classification
	A2. SAILR: A Compiler-Aware Structuring Algorithm
	슬라이드 번호 19
	Angr Decompiler
	ISD Optimizations
	Deoptimizing ISD
	ISC Optimization
	Deoptimizing ISC
	A3. Evaluation
	Measuring the Quality of Structuring
	슬라이드 번호 27
	Measuring the Quality of Structuring
	GED and CFGED
	Evaluation
	Why is CFGED so large?
	Takeaway

