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Large Scale Training

• Simple Architecture + Large Model Size (param) + Large 
Dataset => good performance!

• Often outperforms the most complex algorithm

• Scale to Larger Dataset?
• Fine-tuning

• Scale to Larger Model?
• Retraining => incurs extremely high costs!



Existing Solutions: Model Reuse

• Why not reuse existing model
• Initialize larger models with pre-trained smaller models by

• Duplication
• Stacking
• Combining model weights

• Cons
• Risks Losing pre-trained knowledge and slowing convergence



TokenFormer

• Allows for parameter scaling in a natural and seamless 
manner while preserving the integrity of the existing model.



Methodology

• Token-Parameter Attention Layer (Pattention Layer)
• Progressive Model Scaling



Transformer (Original)

• Linear Projection limits 
scalability!



Token-Parameter Attention Layer 
(Pattention Layer)
• Treat parameters as tokens



Token-Parameter Attention Layer 
(Pattention Layer)
• Θ is a modified softmax operation
• f is the GeLU function

Softmax Function Modified Softmax Function



Applying Pattention Layer



Progressive Model Scaling

• Progressive Model Scaling is done by concatenating new 
parameter tokens to old

• New tokens are initialized at 0, model can perfectly resume the 
model state from the pre-training phase



Experiments

• Continual Expansion Capability

• Efficacy (Vision / Language)

• Comparison vs Transformer

• Ablation Study



Progressive Model Scaling



Efficacy Language



Efficacy Image Classification



Comparison vs Transformer



Ablation Study



Conclusion

• TokenFormer
• Leverages the attention mechanism to facilitate interaction between 

tokens and model parameters

• All linear projection layers are replaced with the pattention layer.

• TokenFormer offers great flexibility than traditional transformers
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