TokenFormer: Rethinking Transtormer
Scaling with Tokenized Model
Parameters

Haiyang Wang'3, Yue Fan'!, Muhammad Ferjad Naeem?, Yongqin
Xian?, Jan Eric Lenssen], LiWSeiQ/_Velm1g3, Federico Tombari?, Bernt
chiele

'"Max Planck Institute for Informatics 2Google 3Peking University

Large Scale Training

« Simple Architecture + Large Model Size (param) + Large
Dataset => good performance!
« Often outperforms the most complex algorithm

* Scale to Larger Dataset?
* Fine-tuning

* Scale to Larger Model?
 Retraining => incurs extremely high costs!

Existing Solutions: Model Reuse

* Why not reuse existing model

* Initialize larger models with pre-trained smaller models by
 Duplication
» Stacking
« Combining model weights

» Cons
* Risks Losing pre-trained knowledge and slowing convergence

TokenFormer

* Allows for parameter scaling in a natural and seamless
manner while preserving the integrity of the existing model.

17 — Scaling Transformer from scratch
—— Scaling Tokenformer incrementally [Token-Param Attn]
16 FFN) 4
[Key Param] [Value Param]
> 15
=
E " 124M 354M 757M 148 [Token-Token Attn] [Token-Token Attn]
GE; Q Kk v Q K v
Q.
13 T
2 1 1 1
[Input] [Key Param] [Value Param]
H 2000 4000 6000 8000 10000 12000
Training cost / TPU hours Transformer Tokenformer

Figure 1: Traditionally, large transformer architectures are trained from scratch without reusing
previous smaller-scale models (represented by blue dots on the left). In this paper, we propose a novel
fully attention-based architecture that allows scaling model incrementally, thus greatly reducing the
overall cost of training large transformer architectures (depicted by red dots on the left). The right
panel delineates a comparison between conventional Transformer and our Tokenformer.

Methodology

« Token-Parameter Attention Layer (Pattention Layer)
* Progressive Model Scaling

Transformer (Original)

e Linear Projection limits

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
b I input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
S C a a I I y o with weight matrices Q/K/V matrices produce the output of the layer
W0

4’—'7 . ,QU Z

_ . Q _ . K _ . Vv W,Q
Q X W ’ K X W ’ V X W ’ * In all encoders other than #0, ":f‘l
we don't need embedding. = !
We start directly with the output \ = - { — i |
of the encoder right below this one

| W,Q

Token-Parameter Attention Layer

(Pattention Layer)

 Treat parameters as tokens

Pattention(X, Kp,Vp) = O (X - K]I) - Vp,

Input Tokens | S -

rd Pattention Layer \

F
4 d : Key Param. Tokens | [Value Param. Tokens :
[Norm] e 1 | Input Tokens I:l I:] D D D |:| D 1
______________________ P I D 1
' DY :
: | I Matching | J 1
" l Paﬂentiohl IPaﬂenlion | l Pattention | | I \ oo i
g X | [:
E : Q I K v J 1~ I I
L I [Token-Token Attention J | s~ :
| I 4 Waeighted Sum !
5 i 7 1 | Nx e e e u
= d Pattention | : e S ———— .
IE - 1 ! Parameter Reusing in Pattention |
I
@ : Key Param. Tokens Value Param. Tokens | |
[[
Norm Ceen) | E5 00 [LIL 00|
| odd Newd oidd _ Newdq) |
Pattention : I
I

I
_ 4 Y, |\ [Token-Parameter Cross-Attention J :

Figure 2: Tokenformer is a fully attention-driven architecture featuring a new token-Parameter
attention (Pattention) layer. The Pattention uses a set of learnable tokens to represent model
parameters and lets the input tokens attend to them. As the model scales, Tokenformer adds new
learnable tokens to expand the existing key-value parameter sets, while keeping the feature dimension
constant and leaving the rest of the computation unaffected.

Token-Parameter Attention Layer
(Pattention Layer)

* O is a modified softmax operation
* f is the GelLU function

Pattention(X, Kp,Vp) = O (X - K;:_) - Vp,

= pr(A/f) Viel.n, Si = f(Z;) = f(Ai x vin), Viel.n,
Zj‘ 1exp(J/f) \/Z] 1’143‘2

Softmax Function Modified Softmax Function

Applying Pattention Layer

[Input Tokens]

Q = Pattention(X, K9, V¥), K = Pattention(X, K5, VL), V = Pattention(X, K}, V),

Pattention Pattention Pattention

i Ql K| vl

KT
X, = softmax [Q] -V,

Vd

O, = Pattention (Xatt, K JQ, VIQ) :

[Token-Token Attention]

[Pattention]

TokenFormer

Ot = Pattention (Xffm Kgn’]t;fn) ,

[Pattention]

- P J

Progressive Model Scaling

 Progressive Model Scaling i1s done by concatenating new

parameter tokens to old

« New tokens are initialized at 0, model can perfectly resume the
model state from the pre-training phase

scale old new scale old new
KP _[KPaKP}a VP _[VPaP}a

O = Pattention (X | JSsle Vlicale) :

Parameter Reusing in Pattention

(
Value Param. Tokens

I
|
|
|
|
| Input
|
|
|
|
I
|

Experiments

 Continual Expansion Capability
« Efficacy (Vision / Language)
« Comparison vs Transformer

* Ablation Study

- Scaling Transformer from scratch with 300B

Incrementally scaling Tokenformer with 15B
— |ncrementally scaling Tokenformer with 30B
Incrementally scaling Tokenformer with 60B

17

16

-
w

=
-

124M 354M 757M 1.4B

Perplexity

-
w

12

11

2000 4000 6000 8000

Training cost / TPU hours

10000 12000

Figure 3: Evaluating model scaling costs through
cumulative computational budgets. The Trans-
former baseline incurs expenses for each individ-
ual scaling step performed independently from
scratch, whereas Tokenformer aggregates costs
across all scaling stages, including training a
124M model initially, progressively scaling to
354M, 757M, and 1.4B parameters.

Progressive Model Scaling

10 ® —— Scaling Transformer from scratch with 3008

" Scaling Transformer from scratch with 30B

= Incrementally scaling Tokenformer with 30B
15

[
H

354M 757M 1.4B

Perplexity

-
w

12

0 2000 4000 6000 8000

Training cost / TPU hours

10000 12000

Figure 4. Evaluating model scaling costs by mea-
suring the budget required at each scaling stage.
The Transformer baselines used are consistent
with those depicted in Figure 3, trained with 30B
and 300B tokens. Similarly, for Tokenformer, the
cost 1s the budget required for each incremental
scaling step from a smaller one. All the experi-
ments were conducted on TPU v4 hardware.

Efficacy Language

Pile @LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande | Average

Model #Param ppl | ppl | acc T acc T accT accT acc?T acc T acc T

Pythia-160M (Biderman et al., 2023) 160M 29.64 37.25 354 30.3 62.3 43.6 23.6 51.3 40.1
Ours (TokenFormer-150M) 150M 10.45 16.38 45.0 35.5 64.9 47.3 24.9 50.4 44.7
Pythia-410M (Biderman et al., 2023) 410M 9.95 10.84 514 40.6 66.9 52.1 24.6 53.8 48.2
Ours (TokenFormer-450M) 450M 8.28 7.69 57.3 47.5 69.5 56.2 26.7 54.6 52.0
Pythia-1B (Biderman et al., 2023) IB 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 51.9
Ours (TokenFormer-900M) 900M 7.38 5.46 64.0 55.3 72.4 59.9 30.6 56.4 56.4
GPT-Neo 1.3B (Black et al., 2021) 1.3B - 7.50 57.2 48.9 71.1 56.2 25.9 54.9 524
OPT-1.3B (Zhang et al., 2022) 1.3B - 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-1.3B (Biderman et al., 2023) 1.3B 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
Ours (TokenFormer-1.5B) 1.5B 6.91 5.24 64.7 60.0 74.8 64.8 32.0 59.7 59.3

Table 1: (Zero-shot Evaluations.) The best performance for each model size 1s highlighted in bold.
Our comparisons are made with publicly available transformer-based LMs with various tokenizers.
Following Pythia (Biderman et al., 2023), our model 1s trained for up to 300B tokens on pile dataset.

Efficacy Image Classification

Method Image Size #Param Top-1 acc

ViT-B/16 (Dosovitskiy et al., 2021) 3842 86M 77.9
DeiT-B/16 (Touvron et al., 2021) 2242 86M 81.8
ViT-B/16 (MAE) (He et al., 2022) 2242 86M 82.3
Ours-B/167 2242 86M 82.1

Ours-B/16 2242 109M 82.5

ViT-L/16 (Dosovitskiy et al., 2021) 3842 307M 76.5
ViT-L/16 (MAE) (He et al., 2022) 2242 307M 82.6
Ours-L/16f 2242 307M 83.0

Ours-L/16 2242 407M 83.1

Table 2: (Image Classification.) Comparison of standard vision transformer on ImageNet-1K. The
training hyperparameters are completely consistent (batch size, learning rate, etc.) with He et al.
(2022). 7 denotes models where the parameter size has been matched to that of the standard ViT.

Comparison vs Transformer

— Transformer 17 — Incrementally scaling Transformer (Net2Net)
10 —— Tokenformer —e— Incrementally scaling Tokenformer
16
8
(7))
<] 215
% © 3
2 2
o 14
a.
4
13
2
12
0 500 1000 1500 2000 2000 2500 3000 3500 4000
Training iterations Training cost / TPU hours

Figure 6: Loss curves comparing pre-trained Figure 7: Performance benchmarking on incre-
Transformer and Tokenformer as their parameters mental model scaling between Transformer with
are scaled during continued training on enwik8. Net2Net scheme and our Tokenformer.

Ablation Study

Nonlinear Function Normalization Top-1 acc Learnable Weight () Learnable Bias (5) Top-1 acc
e’ L1 Norm 79.6 v v 82.6
GeLU L1 Norm 81.7 - v 82.5
GeLU L, Norm 82.5 - - 82.5

Table 4: Ablation of Softmax part on ImageNet Table 5: Ablation of non-parametric layer normaliza-
classification with base model. tion on ImageNet classification with base model.

Conclusion

 TokenFormer

* Leverages the attention mechanism to facilitate interaction between
tokens and model parameters

« All linear projection layers are replaced with the pattention layer.

« TokenFormer offers great flexibility than traditional transformers

	TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
	Large Scale Training
	Existing Solutions: Model Reuse
	TokenFormer
	Methodology
	Transformer (Original)
	Token-Parameter Attention Layer (Pattention Layer)
	Token-Parameter Attention Layer (Pattention Layer)
	Applying Pattention Layer
	Progressive Model Scaling
	Experiments
	Progressive Model Scaling
	Efficacy Language
	Efficacy Image Classification
	Comparison vs Transformer
	Ablation Study
	Conclusion

