


Motivation

• Safe to Apply (StA)
• Does not introduce any modification that could potentially break the 

functionality of the original binary.

• *break functionality?
• Does not increase valid input space of the binary
• Output of the patched binary remains the same as the original for all valid 

inputs

• Given an original and patched binary, VeriBin uses symbolic 
execution to identify if the patch is StA or not.



Scope

• StA
• Does not increase input space
• Does not affect program behavior for all valid inputs

• Many types of Patches
• “Security Patches”

• Usually only restricts input



Security Patch





Terminology

• Valid Exit Path (VEP)

• Error-handling Exit Path (EEP)

• Path Constraint (PC)



Key Idea of Identifying StA

• Identify all EEPs 

• All paths that is not a EEP is considered an VEP

• For every VEP, verify the StA properties



StA Properties

• P1: Non-Increasing Input Space
• A valid input for VEPp is also valid for VEPo

• P2: Non-local Memory Writes 
• All non-local memory write operations on VEPp should write the same value to the 

same memory region as the corresponding one in VEPo

• P3: Return Value Equivalence 
• Return value along VEPp should be the same as the return value of VEPo

• P4: Function Call Equivalence
• Function calls made along VEPp should be equivalent to functions calls made 

along VEPo



Challenges (Finding EEP)

• Application-specific error-handling functions
• BUG, WARN in Linux Kernel
• Often unavailable

• Error Labels
• goto fatal
• Often unavailable

• Return Value
• Valid: return 0; Error: return -1
• Compiler optimization combine return points

• VeriBin
• Collect all executable paths + Symbolic Execution
• Verify through heuristics



Heuristics for EEP

• Call to Error-Handling Functions
• exit, __assert_fail, abort … (dynamically linked)
• FLIRT (statically linked)

• Return value
• Invalid return values (e.g., -1)

• Collect all return values
• 2 unique (value associated with shortest execution path is invalid)
• More than 2 (negative values are considered invalid)
• Incorporate invalid return values specified by the analyst

• Length of execution path
• EEP is relatively short compared to VEP 

• EEP if path length is less than 0.8 of the average length of all paths in the CFG.



Challenges (Handling Complex Symbolic 
Constraints)
• Solving Path Constraints using SMT solver is challenging!

• No Type information (Integer theory -> bit-vector theory)
• Absence of variable names + other identifiers

• Matching Path Pairs (MPP)
• Pair of VEP (one in patched and one in original)
• Any input executed in VEPp executes it VEPo



Challenges (Handling Semantically 
Equivalent Changes)
• What if a function call is replaced with other equivalent 
function calls? Or what if we add calls to logging functions?

• Does this violate P4? (Function call equivalence)

• Adaptive Verification Technique
• Generate short prompts that analyst can answer to resolve these

problems



Adaptive Verification

• Q1 During P2 (Non-local Memory Write), when the original value 
and the patched value differ.

• Q2 When there are additional global writes in patched version

• Q3 When there are unmatched function calls

• Q4 When a function is called a different number of times

• Q5 When an argument in a matching function call pair is different





Evaluation



Evaluation



Case Studies (CVE-2024-3094 XZ Utils)


	슬라이드 번호 1
	Motivation
	Scope
	Security Patch
	슬라이드 번호 5
	Terminology
	Key Idea of Identifying StA
	StA Properties
	Challenges (Finding EEP)
	Heuristics for EEP
	Challenges (Handling Complex Symbolic Constraints)
	Challenges (Handling Semantically Equivalent Changes)
	Adaptive Verification
	슬라이드 번호 14
	Evaluation
	Evaluation
	Case Studies (CVE-2024-3094 XZ Utils)

