


Motivation

• Safe to Apply (StA)
• Does not introduce any modification that could potentially break the 

functionality of the original binary.

• *break functionality?
• Does not increase valid input space of the binary
• Output of the patched binary remains the same as the original for all valid 

inputs

• Given an original and patched binary, VeriBin uses symbolic 
execution to identify if the patch is StA or not.



Scope

• StA
• Does not increase input space
• Does not affect program behavior for all valid inputs

• Many types of Patches
• “Security Patches”

• Usually only restricts input



Security Patch





Terminology

• Valid Exit Path (VEP)

• Error-handling Exit Path (EEP)

• Path Constraint (PC)



Key Idea of Identifying StA

• Identify all EEPs 

• All paths that is not a EEP is considered an VEP

• For every VEP, verify the StA properties



StA Properties

• P1: Non-Increasing Input Space
• A valid input for VEPp is also valid for VEPo

• P2: Non-local Memory Writes 
• All non-local memory write operations on VEPp should write the same value to the 

same memory region as the corresponding one in VEPo

• P3: Return Value Equivalence 
• Return value along VEPp should be the same as the return value of VEPo

• P4: Function Call Equivalence
• Function calls made along VEPp should be equivalent to functions calls made 

along VEPo



Challenges (Finding EEP)

• Application-specific error-handling functions
• BUG, WARN in Linux Kernel
• Often unavailable

• Error Labels
• goto fatal
• Often unavailable

• Return Value
• Valid: return 0; Error: return -1
• Compiler optimization combine return points

• VeriBin
• Collect all executable paths + Symbolic Execution
• Verify through heuristics



Heuristics for EEP

• Call to Error-Handling Functions
• exit, __assert_fail, abort … (dynamically linked)
• FLIRT (statically linked)

• Return value
• Invalid return values (e.g., -1)

• Collect all return values
• 2 unique (value associated with shortest execution path is invalid)
• More than 2 (negative values are considered invalid)
• Incorporate invalid return values specified by the analyst

• Length of execution path
• EEP is relatively short compared to VEP 

• EEP if path length is less than 0.8 of the average length of all paths in the CFG.



Challenges (Handling Complex Symbolic 
Constraints)
• Solving Path Constraints using SMT solver is challenging!

• No Type information (Integer theory -> bit-vector theory)
• Absence of variable names + other identifiers

• Matching Path Pairs (MPP)
• Pair of VEP (one in patched and one in original)
• Any input executed in VEPp executes it VEPo



Challenges (Handling Semantically 
Equivalent Changes)
• What if a function call is replaced with other equivalent 
function calls? Or what if we add calls to logging functions?

• Does this violate P4? (Function call equivalence)

• Adaptive Verification Technique
• Generate short prompts that analyst can answer to resolve these

problems



Adaptive Verification

• Q1 During P2 (Non-local Memory Write), when the original value 
and the patched value differ.

• Q2 When there are additional global writes in patched version

• Q3 When there are unmatched function calls

• Q4 When a function is called a different number of times

• Q5 When an argument in a matching function call pair is different





Evaluation



Evaluation



Case Studies (CVE-2024-3094 XZ Utils)
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